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PREFACE

The following report is the last of a series of five

reports dealing with research related to the problem of

deep-sea mooring linesunder the stated contract. These

studies were initiated in January, 1959 with Dr. Basil W.

Wilson as principal investigator. A large part of the

efforts, as summarized in the first four reports, were

related to the problem of the equilibrium configuration.

The present study, which was been completed under the support

of the Texas A & M Researdh.Foundation in fulfillment of the

original contract obligations/ideals with the dynamics of

deep-sea mooring lines. The primary emphasis is on
methodology in the solution of this problem.!IAlthough

some application is made, an extensive parametric study
is well beyond the scope of the present study.

Several publications based upon prior studies under

this contract have appeared in the literature and are

cited in the list of references.

The author wishes to express his appreciation for

the patience of the original sponsor. Hs is pwrticularly
n grateful for the preserverance of his secretary, Mrs.

Florence G. McCully in coping with the lengthy set of

equations endlessly interwoven into the fabric of the

presentation. It is hoped that the reader is equally

presevering.

R. 0. Reid

Professor of Oceanography

College Station, Texas
July. 1968
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I. INTRODUCTION

] I 2.Back'round and Scope

I The problem considered in this report deals with

the motions of and tensions within a quasi-elastbi mooring

.I line which is anchored at the sea floor in oceanic depths

while attached to a ship of buoy at or near the sea

surface and suc.ect to the influence of tiime varying

currents. This is a natural extension of the many pre-

vious studies dealing with the equilibrium configuration

of an Fnchored cable in the presence of steady, coplanar

currents. The mooring motion problem has received much

less attention.

One of the more recent investigations of the

equilibrium problem is that of Wilson (1964, 1965)*

in which the effect of vertical shear of the current is

included (in the second of the cited papers). A com-

prehensive summary of previous studies related to the

equilibrium configuration problem is gtven by Wilson (1964)

and will not be repeated here. The results of such

investigations of the equilibrium configuration of

mooring lines serve as a useful base on which one might

F.A rlist of references is given in alphabetical
ordar by author at the end of this report.
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superimpose a dynamic perturbation theory related to

departures of the current from its mean state.

In the last decade there has been increased interest

in the general mooring motion problem, both in connect 4 on

with the mooring of vessels in the deep sea and with the

use of surface and subsurface anchored buoys, which s,rve

as platforms for oceanographic and/or meteorological

measurements. Recent studies which are particularly

germane to the mooring motion problem are those of

Whicker (1958), Walton and Polacheck (1960), Polacheck,

et al. (1963), Paquette and Henderson (1965), and Fofonoff

(1965, 1966). Although not directly related to the mooring

problem, the paper of Zajac (1957) on the dynamics of

laying and recovery of submarine cable should not be over- ,

looked.

An important aspect of the problem of the transient

mouring line, which does not enter directly into con-

siderations of the equilibrium configuration, is that of

the elastic and anelastic properties of the mooring line.

Although the qualitative features of the stress-strain

processes in stranded cables and ropes are well known,

the available information is rather deficient in a

quantitative sense. Moreover an adequate theory of the

time-dependent properties of a rope or stranded cable

I =
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is lacking. Such a theory should be able to allow for I
such phenomena as creep under nearly constant load, I

time-dependent relaxation of elastic strain under no load

and hysteresis under conditions of cyclic loading.

In a recent paper by Wilson (1967) a summary of some

of the important properties of nylon and coir ropes and of

stranded steel cables is presented. This includes in-

formation in regard to the weight per unit length in i
water, the dnamic modulus of elasticity (which is a

function of the mean load) and the permanent or an-

F F elastic strain (which depends upon the maximum tension

I that the material has previously experienced). Quantita-

tive measurements in regard to hysteresis and- creep, as

well as dynamic modulus of elasticity for nylon rope,

under cyclic loading at various mean tensions, have been

carried out recently by Paquette and Henderson (1965).

-: However, the influence of hysteresis was not allowed

for in their transient state analysis of a moored buoy.

An attempt is made in the present study to include the

hysteresis phenomenon by adopting a time-dependent model

for the physical properties of the mooring line, consistent

with the above information. This is one of the new aspects

of the present theor.

__~1
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L •The dynamical model adopted in this study allows for

three degrees of freedom of displacement of each material

point of the mooring line in response to currents, which

are not necessarily in the same direction at all depths,

and/or in response to three-dimensional motions of the

floatation unit (slip or buoy) to which the mooring line

is attached. The mooring line is regarded as completely

flexible but extendable (both in the elastic and anelastic

sense). Hysteresis and relaxational phenomena related to

the time-dependent stress-strain processes are admitted

via a generalized, Maxwell type, visco-elastic model of

the physical behavior of the mooring line. This model in-

corporates a "memory effect", reflecting the influence

of the prior history of the stress-strain process.

The damping of longitudinal transient oscillations

of the mooring line is related primarily to the hysteresis

properties of the line. On the other hand, the damping

of transverse oscillations is primarily related to the

1 , mechanical "radiation" of energy to the fluid through

the action of hydrodynamic form drag, which is dependent

upon the motion of the mooring line relative to the fluid.

These two effects are considered to be the dominant

mechanisms for damping in the present theory. Specifically,

the tangential skin drag on the cable (Reid and Wilson,

1963) is regarded as negligible compared with the normal

I

4i
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form drag. Moreover, as in most other studies of cable

dynamics, thermal effects are not considered, nor is the

influence of hylrostatic pressure on the properties of

the cable (this being unknown at the present time).

2. Order of Presentation

Within the framework of the above restrictions, a

"general" theory of the three-dimensional mooring line

dynamics is set forth. The presentation starts with a

formulation of the equations of motion of the mooring

line in vector form and a discussion of the hydrodynamical

fluid forces on the line. This is followed by a dis-

cussion of the time-dependent stress-strain properties of

ropes and stranded cables and presentation of an

* anelastic model. The implications of this model in

respect to the dynamic modulus of elasticity and

hysteresis are then compared with the data of Paquette

and Henderson (1965) and Wilson (1967).

A general consideration of the energy conservation

relation for the system is presented. The damping effects

associated with both form drag and internal hysteresis

are displayed explicitly along with the energy supply

terms due to work on the mooring system at its boundaries.

f.-
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In the section which follows, the, component equations

of motion of the mooring line are given explicitly in a

natural coordinate system similar to that suggested by

Zajac (1957), which is based on the local orientation of

the mooring line. This system has the advantage of

facilitating the evaluation of the normal drag force on

the mooring line. Kinematical compatibility conditions

are derived which relate the component velocities of the

mooring line to other dependent parameters characterizing

the cable orientation and strain. The system of equations

are of quasi-linear, hyperbolic type and accordingly

can be recast in the so-called characteristic form

(Free•an, 1951). The latter form has the advantage

that a stable numerical solution of the mooring line

configuration at any time t, starting with an arbitrary

initial three-dimensional configuration is greatly

facilitated. The characteristic form of the basic

relations also clarifies the roles played by the trans-

verse and longitudinal modes of motion of the r oring

line and hence adds to our understanding of the mooring

line dynamics. The numerical method of solution via

the method of characteristics is discussed.

I _ _ _ __ _ _ _ _

__________________________,_______
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For certain problems the linearized equations of

motion of the mooring line are of advantage. These

equations are set forth in a subsequent section and

some examples of their use for small perturbations of

the mooring line from a straight equilibrium state are

discussed.

The use of the perturbation approximation is then

extended to the more general case where the equilibrium

configuration of the mooring line is a curved line in the

vertical plane. In this case the longitudinal and

transverse modes of oscillation of the mooring line

relative to the equilibrium state are coupled due to the

curvature. The linearized perturbation approximation

is useful in respect to considerations of the stochastic

aspects of the response of the mooring line to irratic

motion of the floatation unit to which it is attached.

An application of the method is made for the case where

the motion of the floatation unit is prescribed in

terms of a stochastically stationary time sequence

with stipulated variance spectrum.
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II. EQUATION OF MOTION OF MOORING LINES

1. Assumptions

The primary assumptions in the present analysis

concerning the dynamics of a mooring line are as

follows:

a. The mooring line is treated as perfectly

flexible, i.e., it is supposed that the

line cannot support shearing stresses

normal to the line;

b. Torsional strains in the line are not

considered, it being assumed that there

is no effect of such strains on the

longitudinal or tranm-,verse displacements

of the line;

c. Longitudinal skin drag on the line is

neglected compared with normal drag

associated with relative fluid mot'.on

past the line;

d. It is considered that the mooring line is

fixed at its lower end; i.e., it does not

drag anchor;
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e. It is supposed that the longitudinal

strain in the line is related to the

axial tension and its time history only,

thermal strains and exchange of heat with

the environmental fluid being ignored;

f. It is assumed that radial strain of the

line is related directly to the longitudinal

strain and is independent of the pressure

exerted by the surrounding fluid;

g. Finally the Coriolis force on the mooring

line is considered altogether negligible

compared with other forces.

In the general analysis, no restriction is imposed

on the nature of the current acting on the mooring line.

Accordingly allowance is made for three degrees of

freedom of displacement of any material point of the

line. In general the mooring line is a three-dimensional

curve at any instant. However, certain special cases

will be considered in which the equilibrium configuration

lies in a vertical plane.

Assumptions (e) and (f) are imposed largely in view

of the limited state of knowledge in regard to the physical

and thermal properties of typical mooring line materials.
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The radial strain is needed only in respect to the

evaluation of the buoyancy and normal drag force on

the line, which depenes on its effective diameter among

other factors.

2. Material Coordinate and the Vector Equation of Motion

Consider a mooring line which is securely anchored

at point 0 on the sea bed (Figure 1). Let P be any

material point on the axis of the mooring line.* Let r

denote the position vector of P with respect to anchor

point 0 as a reference. Clearly the mass, M, of line

between 0 and P is conserved regardless of the

dynamic state of the line. One could accordingly adopt

M as a logical material coordinate of the point P.

However, it is more customary to employ an arc length

to identify the point P. In the present analysis we will

let s denote the arc length between the two material

points 0 and P of the mooring line in its original,

completely relaxed state, prior to any permanent strain.

We also define m as the mass per unit length at s

in the same state, such that

* A list of symbols appears at the end of this
report for convenience te the reader.

.1

I. I .. .. . . . . . . .. . . . . . .
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Js

M = M(s) ds,

0

in which m (for a tapered line) may in general depend

on s. In this sense s is merely an alias of M.

L INote that s is not to be confused with the actual

arc length a, of the line between 0 and P in its

general strained state. In general a > s. Moreover

the mass per unit actual length under strained conditions

will generally be less than m, and is equal to

in ds/da.

All dependent variables such as r, a, etc. will be

regarded as functions of the independent variables s

and t. To avoid confusion with a we will hereafter

I refer to s as the material coordinate.

Ii The vector velocity of any material point of

the line will be denoted by V and is related to

r(s,t) by

' iA

! •V 6 r/t. (2)

The iuranslational momentum of the line between 0 and P

is accordingly given by

I JmV ds.

!0

41
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Let T denote the vector tension at P and T

the vector tension at 0, both taken in the sense cf

increasing s along the line. These tensile loads

are, in view of assumption (a), tangent to the axis of

the line at the points in question. Let k denote the

Svertical unit vector (upwards) and g the acceleration

due to gravity such that in the absence of fluid the

line between 0 and P has the weight -M g k or
s

j m g k ds.
0

Finally let F denote the residual surface force acting

on the line between 0 and P due to the action of

the surrounding fluid.

SApplication of Newton's law, bearing in mind

r assumptions (a) and (g), then leads to the relation

/6t m•m V ds =T T j m g k ds + F. ()

Now m is independent of t and To T (o,t),

- so it follows from (3) by differentiating with respect

to s that

m )V/t = T/ s - m g k + f, (4

L______ _ __ ___ ___ ____ ___ ___
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in which T has the direction of the vector 6r/ 6s

and f A )/cs

3. Hydrodynamic Forces Due to the Fluid

In the absence of any motion of the fluid or of

the mooring line, the force F reduces to the static

Archemedian buoyance force, B, given by

B = gk j pAda (d)
0

which p is the fluid density (mass per unit volume)

aand A is the cross-sectional area of the material of

the line at s under strained conditions. The buoyancy

per unit material coordinate is accordingly given by

A)R/)- A AT~

2or simplicity it will be supposed that p is a

constant. However A and 6a/6s can in general

vary with s or t.

In the presence of motion of the fluid relative to

the mooring line, an additional dynamic force can occur.

This is associated with anomalies of pressure distribution

around the surface of the immersed line. Such pressure

______________________
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anomalies can be cieated by acceleration of the fluid

and/or by acceleration of the line through the fluid.

In addition, at moderate to large Reynolds number, a

wake phenomenon can exist on the lee side of the line,

which leads to a form drag effect above and beyond the

influence of acceleration. Also it is well known that

periodic vortex shedding, which occurs at moderate

Reynolds number, can lead to an alternating lateral force

on the line (normal to the relative current) at a fre-

quency deperdent upon the the Reynolds number (Strouhal

frequency).

The drag force, fd" per unit material coordinate

is presumed to be of the form

f D d = (l/2)pVc I - i (Ul - Vn' a/6s, (7)

where D is the effective diameter of the line at

Sposition s and time t, cd is the drag coefficientid

which is a function of the Reynolds number associated

with the relative speed, V is the component of Vn

normal to the mooring line at s,t and U is the
n

component of the fluid velocity U normal to the mooring

line at s, t*. The above relation gives a vector force

* Actually U is the fluid velocity that would

exist in the absence of the mooring line.

S i- 3 -
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normal to the line at s, t, the tangential skin drag

being negleczed. Values of Cd for normal drag on

stranded cable, as a function of the Reynolas number,

are summarized by Wilson (1964). The tangential drag

coefficient is of the order of only one per cent of that

for normal drag for usual ranges of Reynolds number

(see Wilson, 1964 or Reid and Wilson, 1963). Accordingly

the omission of tangential skin drag is not considered

serious. The vector Un can be expressed in the form

Un U ;UT (8)

where T is a unit vector tangent to the axis of the
A A

mooring line at s, t and UT T - U. A simiilar
AVA

relation of course holds for Vn. The unit vector

is related to r by the relation

a c', 7s=7T (9)

The effect of vortex shedding can be simulated by

allowing an oscillatory component of fd normal to the

direction of fd and the local vector T. For the

evaluaLion Of ..he Strouhal frequency at given n oYUlds-

number, see for example Schlichting (1960). The amplitude
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of the resulting tLainsverse, alternating force is

presumably of the order of magnitude of ten per cent

of the local mean value of fd* If we let q denote the

ratio of the amplitude of lateral force to the drag ;orce

and let w be the Strouhal frequency, then the alter-

nating lateral thrust per unit length due to vortex

shedding can be ap~proximated by

fs = xfdcos (wst+) , (10)

where 6 is an arbitrary phase angle.

To the above drag force, which can exist under

steady relative motion, we must allow for the possibility

of an added inertial force. Consider for the time being

that the fluid motion U (away from the influence of the

mooring line) is steady, but that the mooring line is

- accelerated in a direction normal to the line like a

rigid cylinder. In this case a portion of the fluid

in the neighborhood of the line must also be accelerated,

thus leading to an effective retarding force on the line.

The magnitude of this force per unit length of line can

be expressed as - ma an where a n is the acceleration

normal to the line and ma is the effective added mass

of fluid being accelerated at the rate an. If the line
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experiences an acceleration tangential to the line and if

viscous effects are ignored then there will be essentially

no acceleration of the fluid if end effects are also

ignored (very long line). Thus we should expect the

inertial force to be highly directional, like the drag

force.

For a general acceleration of the line but with U

steady, we propose the following expression for the

inertial force per unit length due to the presence of

the fluid

f = m (m / t - T6V¶T/t) (11)
ai

where VT V T, this being the tangential compon'.nt

of the mooring line velocity at s, t. The above relation

is not the only possible choice for f'. Other logicalL i[ choices are

and

- m 3/6t (V - T VT)
a

If T were independent of time then each of the three

possible forms yield identical values of f' . Thus

!i
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the differences result only from terms involving )T/•t,

which represents a turning rate associated with the

local orientation of the axis of the mooring line. Of

the above three possible forms for f' (for steady U),
1

only that given by (11) leads to a physically acceptable

energy equation for the system as we will see in a later

section. The choice of relation (11) is justified pri-

marily on this basis.

In the more general case where the velocity of the

fluid, U (in the absence of the mooring line) is not

steady, then the acceleration term 6U/Bt will contribute

to the inertial force. Its effect, above and beyond

that of )V/6t, is analysed as follows. In the absence

of the mooring line, the fluid occupying the position

of the mooring line would experience a force pA a•A/s

)U/*t, per unit s, where A aa/as represents the

volume per unit s. This force exists by virtue of the

pressure gradient required to produce the acceleration

6U/6t. In the presence of the mooring line, a disruption

of the flow occurs in its vicinity and this incrouaces

an added inertial force similar to that caused by

accelerating the mooring line through the fluid. The

added inertial force is taken as
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m 6U/ t o U 6t)
a T

by analogy with (11). Thus in the absence of any

acceleration of the mooring line the inertial force

per unit of s is considered to be given by

f'= p A 6a/•s JU/•t
i

+ m ()U/C t- T W / 6t) . (12)
a

The total inertial force per unit of s exerted

by the fluid, in the presence of acceleration of the

fluid as well as acceleration of the mooring line, is

accordingly taken as the sum of the right hand

sides of (11) and (12).

The added mass coefficient ma per unit s can

be expressed in the form

m = A c 6/6s
a a

where c is a non-dimensional added mass coefficient.a
The theoretical value of ca for pure potential flow

around a circular cylinder according to Lamb (1945)

e
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is exactly unit. This value applies for very small

Reynolds number. For large Reynold number, the value

of c is generally somewhat less than unity.• a

4. Alternative Form of the Equation of Motion

The total force per unit material coordinate due

to the fluid is given by

Sf= b + fd + f s f 1 . ' (14)

an k (14) I[ Making us o " (6), (7)(") (1), (12), and (14) in

(4) and combining terms involving the acceleration

of the mooring line yields

kiu + Ua) UV-O-M - M T OV¶/it = ai - w+ R, (15)
a

where w is the net weight per unit s given by

w (m- md) g (16)

in which md is the displaced mass of fluid per unit s

md = p A 3c/6s. (17)

- . . . .. .. .. ....
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The residual fluid force R is given by

= -- C P - Vn1 1 + 7icos (wst + 6) Tx] (U - V)

+ (md +m) 3U a UI (18)

It will be recalled that

m = ca md (19)

and

TUn=UTUT

Vn V T VT (20)

where UT U T and VT =V r. Moreover, V, T

and a/ks are related to r as follows

A = ~r/•t (21)

A ~r ~a(22)

Z- ". (23)
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The vector tensile force can be expressed as

T= T T (24)

~|
where T is the scalar tension at s, t and is related

to the longitudinal strain (3a/6s - 1) by dn equation

of state appropriate to the particular mooring line

concerned. This will be considered in some detail in a

later section.

The dependent variables r, V, T, T and a are

sought as functions of s and t for given initial

and end conditions. The velocity U is understood to

be a prescribed function of r and t. Its dependence

on s is not given explicitly but is implied through

the dependence of r on s.

5. End Conditions - Vessel Motion

At the anchor point for each mooring line we require

simply

r (o, t) = 0, (25)

which implies in turn that V (o, t) also vanishes.

We will restrict our analysis to mooring lines

[ without any intermediate attachments between the anchor

and the surface vessel to which each is secured. Let

L denote the material coordinate au the point of

S. . .. . . . .
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at'tachment of the given mooring line to the vessel (i.e.,
L is the original Listrained total length of the mooring

line). A possible simple end condition at s = L is

to specify V (L, t) as a prescribed function of Line.

This together with specified initial values of r and

V versus s is admissible from a mathematical point of

view. However, from a physical point of view, it does

not seem rational to specify the motion of the moored

vessel a priori. Clearly the action of the mooring line

plays a role in constraining the vessel's motion and

indeed can introduce. natural frequencies of oscillation

in addition to those which are relevant to an unmoored

• •vessel. The unmoored vessel, of course, possesses

dist~ict natural frequencies for roll, pitch, and heave

only. The constraint imposed by the mooring line (or

lines) can lead to additional natural frequencies in
surge, sway, and yaw (O'Brien and Muga, 1963).

Thus it would be desirable to deduce the motion

of the moored vessel itself in terms of the hydrodynamicV •forces acting on it, together with the constraining effect

of the mooring line. This implies that r (L, t) and

T (L, t) for the mooring line (or lines) are related

by an appropriate differential eqaation in which the

wave action and/or steady current acting on the vessel

should enter as the prescribed exciting force. The

e
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approach employed here is a compromise in which the motion

of the vessel in the absence of the mooring line (the

potential motion) is prescribed rather than the exciting

forces. This of course requires the specification of six

scalar functions of time corresponding to the six degrees

of freedom of motion for a rigid vessel. Typical measure-

ments of roll, pitch, and heave for large vessels underway

in a seaway are given, for example by Gover (1955).

Measurements of all six motions for a large moored vessel

are presented by O'Brien and Muga (1963).

Appro.-imate relations connecting the motion of a

moored vessel with the prescribed potential motion for

given mooring conditions are derived in-Appendix A

based upon the linearized equations of motion of the type

employed by St. Denis and Pierson (1955), but allowing

for the constraint imposed by the mooring liUn (or lines).

Allowance is made for torque exerted by the mooring lines

as well as the constraining force since in general the

attac.aiment of a given mooring line is not located at the

center of the mass of the vessel. The resulting equations

are valid for small translational and rotational displace-

ments of the vessel. These relations are summarized

below.

Let ;k denote the position vector of the point

"of attachment on the vessel of mooring line k relative

I
-!
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to the anchor point of mooring line k. Let denote

the separation vector from the vessel's center of mass (C)

to the attachment point of mooring line k (Fig. 2).

The vector has constant magnitude but varies in

direction depending on the angular displacement of the

vessel. The mean values of the vectors rk and Pk

are denoted by r and p0 respectively. Now let

X and a denote the potential translational and

rotational displacements* of the vessel, in a given

seaway, if it were not moored and not underway. These

two vectors are regarded as prescribed functions of

time. For small rotational displacements the position

vectors rk at the attachment points can be approximated

by

r =r 0 +a p0
k k k

+ R' *1 x p 0  (26)
k

where R' and #' represent anomalies of the translational

and rotational displacements of the vessel assuciated with

the constraint of the mooring lines. Thus X + R' is the

vector traoslational displacement of the center of mass

* Referred to equilibriium state.
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Fig. 2 Schematic illustrating terms employed
in the upper end condition.
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of the moored vessel relative to its equilibrium position.
A A

Likewise a + 4' is the vector rotational displacement

of the moored vessel relative to its equilibrium

orientation.

Let P' , R1', R.' denote respectively the surge,

sway, and heave components of the vector Rt  and let

* *2' ' 3 ,3 denote respectively the components of

4' in roll, pitch, and yaw. These components rtpresent

a Cartesian system, the reference axes of which are taken

as the equilibrium orientation of the principal axes of

the vessel. As show in Appendix A, the approximate

equations of motion governing the above quantities are

(in compact form) -

(d 2 /td + 20 ct/dt + a) R'k kj ,(27)
k

and

(d 2 /dt 2 + 2p.' d/dt + a.'s)*j = J'/t (28)

where j 1 , 2, or 3. The sums on the right are taken

over the total number of mooring lines. The terms

T'k represent the Cartesian components* of the vector
kj

*In the same system as that for R and *.'.

e•
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T' where

k Tk -

T'k being the vector tensile force at the point of attach-

ment on the vessel for line k (Fig. 2) and T 0
A ik

is the mean value of T k (or equilibrium value). Like-

wise the terms Jk are the Cartesian components, in
kj

the same system of the vector Jk defined by

k .k - - (30)

where

Jk [Pk + a) X pk XTk (31)

and Jio is the mean value of Jk" Physically -Jk

represents the torque exerted by line k on the vessel.

The terms M. are the effective masses of the

vessel (including effective added mass of water) for

motion in surge, sway, and heave (j = 1, 2, 3 respectively).

The terms I. are the effective moments of inertia about

the principal axes for roll, pitcch, and yaw (j = 1, 2, 3

respectively). The coefficients • and 0i are

'1
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are damping rates (units of reciprocal time) fPr the six

components of motion. Finally o and a.1 are thej J
nominal natural frequencies (radians per unit time) for

the unmoored vessel. Note that a, = 2 = 03 = 0

(for surge, sway, and yaw).

Equations (27) and (28) imply that R' and 4'

are appropriate integrals of the dependent vector Tk

and specified function a. Thus (26) implies a relation

between the dependent variable rk at the upper end of

line k and the Tk for all lines. Moreover, there are

as many relations (26) as there are lines, which implies

that the system should be determinatr. As a special case,

if R' and ;' are negligible compared with X and

a respectively, then (26) reduces to the simple relation

r =ro k + o X pk° (26a)
k k

in which X and a are prescribed.

Whether one chooses to specify X and a or

(X + R') and (a+') is perhaps optional; in either

case the motion of the upper end of the mooring lines (in

the case of multiple mooring) should be consistei-t with

(26).
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III. STRESS-STRAIN RELATIONS FOR

ROPES AND STRANDED CABLES

1. Known Properties

Some examples of load versus elongation for ropes

and stranded cables are shown in Figs. 3 and 4. In

Fig. 3, which is taken from Wilson (1967), typical

processes for steel wire cables (upper panels) and for

coir mooring rope (lower panels) are presented. Fig. 4,

which. iQ taken from Paquette and Henderson (1965),

represents a test carried out for a one-half inch

diameter nylon rope of 55-inch original length. In the

latter test the tension was cycled over ranges of + 180

lbs. relative to ten selected mean tensions. Such

tests demonstrate certain features common to both

stranded cables and ropes which are summarized below:

a. The stress-strain relation is definitely

process dependent; i.e., the relation between stress

and stain at time t is dependent upon the prior

stress-strain conditions;

b. The material suffers a permanent anelastic

strain which is dependent upon the maximum load

previously experienced;
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c. For cyclic loading and unloading a hysteresis

loop exists which implies that the stored energy is not

entirely elastic;

d. Anelastic creep is evident for cyclic loading

particularly for large mean loads; the creep tends to

reach a limit after many cycles so as to form a closed

hysteresis loop;

e. The amount of hysteresis energy loss per cycle

definitely depends upon the range of cyclic load;

f. The material can experience a time dependent

relaxation of strain (negative creep) upon sudden

release of load;

g. Under cyclic loading, the apparent spring

coefficient (slope of the principal axis of the hysteresis

loop for small range of load) increases with increasing

mean load (Fig. 4).

The latter effect can also be seen in terms of the

curved axis of the large hysteresis loopsshown in Fig. 3

(dashed curves in upper panels). The rope or cable

acts like a stiffening spring as well as displaying

significant hysteresis.

Conclusive measurements are lacking in regard to

the influence of cycling rate on the apparent spring

coefficient and hysteresis for a given mean load.
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Fig. 3 Repeated load-elongation tests for mooring

line materials: (a) and (b) steel-wireropes; (c) and (d) coir fiber ropes (after

Wilson, 1967).•
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2. A Simple Maxwell Model

A possible approach for representing the stress-

strain processes in a rope or cable is to adopt a

simple three-parameter Maxwell model to simulate its

visco-elastic properties (Freiberger, 1960, p. 579 and

7724). Such a model is shown schematically in Fig. 5.

In this model K1  and Ft represent spring cuefficients

with units of force per unit strain and N is a

frictional coefficient with units of force per unit time

rate of strain. Let e be the overall strain for the

system; this is the same as the strain in segment DE

or in segment AC (Fig. 5). Let e. and • be the

partial strain in segments between AB and BC,

respectively. Let T, be the common tensi-n in the

series segments AB and BC and let To be the tension

in segment DE. The total load, T, is given by

T = To + T,; moreover e = el + 9. Finally ive take

T1= Kel, = N d§/dt and To = K e. Eliminating

To , TI, C. and e2 between ths above five relations

leads to the following constitutive equation for the

system

T + T dT/dt Koe + (K0 + K,) T de/dt, (32)
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K1  N

T AT

D K g

Fig. 5 Schematic of a simple visco-elastic
Maxwell model (symbols are explained
in the text).

T

A BT A

0 C

Fig. 6 Idealized load-strair process for the
Maxwell model; the slope of lines OA and
CB is (K1 + K1 ); the slope of line OB
is KO.

;e
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where T = N/IK. The latter parameter represents a

characteristic relaxation time for the system. In

the above relation it is presumed that the three

parameters K., K,, and T are constants. A relation

essentially equivalent to (32) was deduced by Meixner

(1965) based upon an entirely different approach in-

volving the thermodynamic non-equilibrium processes

in anelastic materials.

The above modelimpliez that fc very slow changes

(32) reduces to

T -& Y , (33)

while for rapid changes

AT (KO + K,) A. (34)

Thus the system is characterize, by two limiting elastic

stress-strain relations which we will refer to as static

and dynamic.

Consider the following special time dependent

- process illustrated in Fig. 6:

a. Starting at zero load and zero strain apply

a sudden load relti.ng in elongation eA = TA/(1o +
i A sudde + K"
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b. Under the sustained load TA, (32) predicts

that e will creep ultimately to the value eB TAK
tha c illcrep utimtel tothevale B TA/KO

after an eiansed time of many T units.

c. Having reached point B now suppose the

load is suddenly removed; the strain immediately after

remova] should be eC = CB - CA since curve BC is

parallel to curve OA.

d. Again at constant (zero) load, the system

is not in equilibrium and (32) predicts a relaxation of

the strain with nearly complete recovery after an elapsed

time of many T units.

The above process is an idealized hysteresis loop;

in !'act it gives the maximum hysteresis compared with

any other cycle having the same range of T. For

simple harmonic cycling of T, the hysteresis predizted

by this model will be frequency dependent.

Suppose T is cycled according to the relation

T = To + T cos wt, (35)

then a periodic solution for e satisfying (32) is
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e= + [K 0 + (% + K1 ) (WT)2] cos t

+ K, wi sin wt [K0 2 + (K 0 + KI )2 (WT)2 ]-1 , (36)

where both T and c are of period 2i,/w. Since e is

out of phase with T, a plot of T vs e as in Fig. 7

shows a characteristic hysteresis loop Had we allowed

for an arbitrary initial condition then the resulting

plot of T vs c would also show some creep effect

as in Fig. 4, with T vs e ultimately approaching

the stable hysteresis-lop implied by (35) and (36).

The hysteresis for a closed cycle will be defined

by

H T de . (37)

For the idealized process represented schematically

in Fig. 6, the hysteresis is simply

Hi =TA ('B e A)

S .. ... .. .. . ... .. . ... 1 - -
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Fig. 7 Hysteresis ellipse for simple harmonic
cycling of the Maxwell material.
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or

H. (38)

where AT = TA/ 2 . For simple harmonic cycling we can

compute H by rewriting (3•7) in the form

H T E dt (39)

Using (35) and (36) this gives

H - Ki" • (AT) 2 W" . (40)

IC2+ (KO + 1,ý) 2 (WT)2]

A non-dimensional plot of H versus w according to

this relation is shown in Fig. 8. The latter has a

maximum value when wT =KO/( + K1.), the maxiinwm

value of H being

H(41)
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Fig. 8 Relative hysteresis versus a non-dimensional
frequency parameter for simple harmonic
cycling of the Maxwell material at fixed AT.
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Comparison with (38) indicates that the m 4ximum

hysteresis for simiile harmonic cycling is 7r/ 8 times

that for the idea :ed process.

The slope of the major diagonal of the hysteresis

ellipse (line AB, Fig. 7) represents an apparent spring

coefficient K* whose value can be shown to be given by

K 4K02 + (O +K )2 (wT) (Y)
t i + (wT) 2  ("

For WT << 1, K* is nearly equal to K. while for

WT >> 1, K* approaches KO + K1 . Thus the apparent

spring coefficient for this model is frequency dependent.

The elastic unergy per unit length, Ee9 for the

Maxwell model is the sum of that stored in segments AB

and DE (see Fig. 5). This can be expressed in the

form

Ee=1 1

K0 C2 +-KI K 1, • (43)

The elastic strain el can be rewritten as the difference

e - § where §, it will be recalled, is the anelastic

strain for segment BC. Thus the elastic energy can be

rewritten as

_____ ____ _ I -
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E 1 1

e K • ,• e2+-K (C §)2 (44)

Now consider the partial derivatives of the function

Ee (c, ():

(45)

e A -§€ +K 1

The above two relations can be shown to be consistent

with (32) if and only if

UEe /6e T,

(46)
6 /a -N cg~.

where N = T. These relationdwere employed aF a

starting point in the analysis by Meixner (1965). They

are asserted to be more general than the special

Maxwell relation since E need not have the form (44)
e

for more general materials. Indeed relations (46) will

serve as .a useful point of departure in the considerations

of the following section.
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3. Generalization of the Maxwell Model

Although the above simple model allows for

hysteresis and associated relaxational phenomena, it

is obviously deficient in at least two respects. First,

there is no allowance for permanent elongation. Second,

it assumes constant values of elastic coefficients.

Both of these shortcomings can be overcome by adopting

a scheme similar to that suggested by Wilson (1967).

In essence this scheme distinguishes between the quasi-

elastic strain e - co and the permanent strain e.,

in which the latter is a function of the maximum tension

which the material has previously experienced. MoreL

for given co, the tension is regarded as a non-linear

function of the quasi-elastic strain. The data further-

more indicate that the form of this dependence is

independent of co.

The proposed generalized stress-strain model which

incorporates these features can be obtained in a sys-

tematic manner by starting with a rational generaliza-

tion of the elastic energy function Ee. It will be

understood that Ee is the elastic energy per unit

material coordinate (s). As before we will regard this

as a function of the total strain e and the anelastic
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strain. The latter, however, consists of a passive

permanent strain co and an active anelastic strain •.

These are distinguished by the fact,that, under normal

conditions, 6/at can be positive or negative while

C[ )o/8t cannot be negative unless the material is

thermally or mechanically reworked.* Specifically e.

represents the equilibrium value of e at zero load.

The elastic part of the strain is (e - eo -o ) and

the counterpart of e in the previous model is now

(C - eo). With, this in mind the proposed generalization

for Ee is the following:

E e = f(C - Co) + (0C/ 2 ) C. - (- , 47)

in which 4 is a constant with dimensions of force

and f(c) denoces a non-linear, positive function of

a £ - C., dependent upon the material and con-

figuration. Relation (44) is a special case in which

PO= 0 and f(e) = (K./2)e2. Using (46) yields

*In essence, this is a manifestation of the second

law of thermodynamics as applied to real materials in

which £o is related closely to the entropy of the

material, at least for adiabatic aonditions.
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T f -(e ) + K, (C - Co - (48)

L ;F and

, = (C - £0 -C ) , (49)

where f'(a) - df/da and T1  = N/IK. The latter

time constant now carries a subscript since we will

introduce at least one more time constant later.

For very slow rate of strain, (49) reduces to the

equilibrium relation

S£C - CO- 0 (50)

and the associated quasi-static load-strain relation

becomes

T = f,(C - 6o). (51)

On the other hand, for very rapid rate of straining g

is small compared with e - co, although T1 6F/•t

is not. In this case, (48) reduces to the dynamic

load-strain relation
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Td = ft(C - £o) + K1 (C - %). (52)

The associated dynamic spring coefficient is

cT K (53)
d

Wilson (1967) has -uggested a simple power law

dependency of T on (e - co) for dynamic conditions;

this is of the form

Td = Y8(£ £)n, (54)

where Y is a constant. He 'inds that n = 3 for

nylon rope and 3/2 for stranded steel cable. However,

this -elation appears to give a reasonable fit to the

data only for moderate to large values of e - co. At

small (e - co) the data pertinent to the dynamic tests

tend to indicate a linear dependency of Td on (e - co)

since (dT/de)d has a finite slope at e = co (see Fig. 3).

An alternative is to take f(a) proportional to

an such that Td reduces to a linear relation at small

C - Co. However, as will be shown, the data of Paquette

ei
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and Henderson (1965) indicates that an exponential form

for f(a) is more appropriate, at least for nylon rope.

They evaluated the dynamic spring coefficient at ten

mean tensions from the slope of the stabilized hysteresis

loops (of small AT) for the test illustrated in Fig. 4.

Such measurements axc- potentially more accurate than

inferences drawn from the large hysteresis loops

analysed in Wilson's study. Their results are shown

as a function of tension in Fig. 9. These seem to indicate

a linear dependency of ()T/6e)d on T. A least squares

fit of the form

;•)T= K + bT,
d

yields (55)

K = 1.4 x 104 lbs

b = 26.0,

with a standard error of estimate of (6T/Sc)d of

about 0.7 x 10' lbs for the 1/2 inch diameter nylon rope.
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If we accept the empirical fit (55) then from

(52), (53), and (55) we get

f"(a) - b f,(aw) = (K- K,) + b K a, (56)

where a - -c c. This leads to a solution for f'(CL)

of the form

f(M) ce - K- m (57)

where c is a constant of integration. Thus from (52)

we get

Td = ceb ( co ) _ Kt (58)

however, Td must vanish when C = CO (by definition

of Co) and hence we require that c = K/b. Consequently

K eb (c - eo)-].()
Td L (59)

The limiting slope at zero - co ( zero Td ) is

()d/)o = K. (60)

It

I_ -r _ _



r 52

Moreover for the static case, xror which T is given

by (51), we get

T = Td - Y (C - CO) . (61)

This has a limiting slope at zero c - eo given by

(6T/6e)o = (K-K 1 ) , (62)

which clearly requires that I Y'

Finally from (47) and (57) with c = K/b we get

for the elastic energy

Ee= K b(c - co b
B [ e -) b (e co

I- C ( C-CO)C + (K1 /2) g2 (63)

For very small (e - co) this relation reduces to that

for the simple Maxwell system where K is equivalent to

K0 + K, for that system.

As an application of (59), with the coefficients

given by (55), we note that a dynamic tension of 7000 lbs

will give rise to a quasi-elastic elongational strain

(e - co) of about ten per cent. However, under quasi-

static conditions the elongation would be signtficantly
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larger, particularly if KC is nearly equal to K.

For the general straining conditions, (48) and (57)

yield

• • •K b (c -co) •
T = [ e -]- ,(64)

which is consistent with aE e/c from (63). This
e

together with the prognostic relation for 9, Eq (49),

represents a generalized model for the case of constant

CO.

4. The "Saturation" Relation

To relations (64) and (49) we must add a third

re&.ation governing %. Figs. 3 and 4 indicate that

for a given co there apparently exists a sort of

"saturation" curve in the T, c-diagram. This corresponds

to the path which would result for very slow undirectional

straining from the original state to the ultimate point

(path 0 S U of Fig. 10). It is strictly an irreversible

one-way path, I -"r if the load is removed at some inter-

mediate point S, even very slowly, the strain will

return to some value e along a different path SB.

I.. . . .
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0 -= F(Ts) -

Fig. 10 Schematic illustrating the "saturation"
curve OSU in the load-strain diagram.

i Ta

Fig. 11 Schematic of dynamic overloading in the
vicinity of the "saturation" curve.
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Thus in principle

C F (Ts), (65)
1s

the form of the function being readilydeduced empirically.

The data summarized by Wilson suggest that a power law

form

F (T) a Tsm (66)

leads to a reasonable fit, at least for tensions less

than 75 per cent of the ultimate value. For ropes m < 1

while for steel cable m > 1.

It is not implied by the above discussion that Ts

is an upper bound for T for given e.. The actual

I T versus e near the saturation level depends upon the

rate of strain. For example, referring again to Fig. 4,

i the relation Ts versus e is shown by the dashed line

drawn through the uppel ends of the final hysteresis
loops. There is an "overshoot" of this saturation curve

which occurs when the mean load is suddenly increased

after having reached a stable hysteresis loop. In order

to simulate this effect, the following relation is

suggested for co :

I..
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S(T) - if < F(T)

T e0 o/t= (67)
0 , if £ 0 aF(T)

where To is a second characteristic relaxation time

for the rope or cable. If T is 4nitially at the

saturation level for given co -and if c)T/'•t > 0,

but of very small magnitude, then ce will change

nearly in accird with F (T).

Suppose, on the other hand, that T is initially

aIat some saturation level T (Fi&. 11), corresponding to

COa, but experiences a sudden increase to the value Tb

after which it remains constant. Then since coa < F(Tb),

io must increase with time approaching the final value

Cof = F(Tb) asymptotically. Specifically relation (67)

implies that
S

Co - (Cof- foa) e-t/To (68)

for this case. The change of e will have essentially

the same behavior. As a test of this relation, the data

of Fig. 4 wsz analysed for the case where the mean tension

was suddenly increased from about 6300 lbs to 7000 lbs.

In this test T was also varied periodically over the

range 7000 + 180 lbs after the increase, thus giving

a progressive series of loops which provide a*,time

" I
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Fig. 12 F=&Lative strain ("log scale) versus elapsed
time, illustrating the creep phenomenon-
near the "tsatur~ation"r curve (based up on
data of~ Pa~quette and Henderson, 1965).
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scale for the creep phenomenon. The period of cycling

for this case, as deduced from the data of Paquette and

Henderson, is about ten seconds. A semi-log plot of

o f - Co (in relative units) versus time 's shown in

Fig. 12. This clearly confirms the exponential re-

laxation and yields a value of To for the nylon line

of about 40 seconds.

5. Hysteresis for.Nylon Rope

The measurements of Paquette and Henderson (1965)

for the one-half inch diameter nylon rope included

evaluation of the hysteresis for five different ranges

of fT all at a com.on mean tension of 2000 lbs and

"t cycling periods from 12 to about 60 seconds. Their

results indicated that the hysteresis energy absorption

per cycle, H, was nearly independent of the period of

cycling. The results are summarized in Table 1.

In terms of the present load-strain model, the

lack of dependency of H on the period of cycling should

imply that H is near its maximum, so that it is linearly

independent of w,

e
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TABLE 1

HYSTERESIS IN HALF-INCH NYLON ROPE
AT MEAIN TENSION OF 2000 lbs

(After -aquette and Henderson, 1965)

Tension Hysteresis Period of Cycling
Variation AT per cycle (sec)

(lb) (ib)

+ 140 0.12 18, 36

+ 280 0.52 12, 16, 40, 57

+ 560 2.3 18, 30

+ 1120 15.2 30, 50

+ 1400 29.7 30, 55

I
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For small amplitude cycling about a mean tension

TO, the linear theory of section 2 should be applicable

provided that :KO + K,) is taken as the dynamic spring

coefficient for the mean tension TO. From Fig. 9 with

T= 2000lbs we get (K0 + Kj) = 6.8 x 10 lbs. From

the results of section 3 it was found that K1  should

not exceed 1.4 x 10' lbs for this same case. If we

consider that H is at its maximum given by (41) and

that ý = 1.4 X !0' lbs then we find that at most

H = 6.0 x 10- (AT)2  (69)

for small AT, in the case of the one-half inch nylon

line tested by Paquette and Henderson. A plot of the

data from Table 1 is shown in Fig. 13. The full curve

is simply a smooth interpolation. The dashed curve

is a plot of relation (69). The fact that it is

asymptotic to the full curve for small AT seems to

be a verification of the assumptions leading to relation

(69); namely that H is at its maximum for given AT

and that K1  is the maximum permissible value consistent

with the data of Fig. 9. If this is correct then w'r

should be equal to the value for which H has it maximum,

namely +/(K + K,) which has the magnitude of 0.79.
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The overall mean period of cycling for these tests was

about 30 seconds and hence T. is presumab•y about four

seconds.

There are, however, two disturbing features of the

data which are not adequately explained by the present

model. First of all, the appreciable departure of H

at large &T from that given by (69) is not adequately

explained. Second, that data of Paquette and Henderson

indicate that the dynamic spring coefficient decreases

with increasing AT for fixed value of mean tension.

The non-linear aspect of the load-strain relation does

not adequately explain these observations. A possible

explanation may lie in the frequency dependence of H
-4

and the apparent spring coefficient. However, adequate

I tests of the frequency dependence are lacking.

6. Summary and Possible Further Generalization

At least many of the observed properties of ropes

and cables seem to be in accord with the foregoing

model which is summarized here:

K~~ ( e co~ ~ 1

;I
T e (69)

2•b

T,(C C (0
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e rF(T) - co if co < F(T)T .-t t= (71)

0{ 0 , if eo F(T)

where F(T) = e corresponds to the saturation relation

appropriate to very slow unidirectional straining.

It must be emphasized that further critical

measurements are needed to check the validity of the

model, particularly in respect to the effect of %.Ae

rate of strain. Measurements of hysteresis over a

wide range of cycling periods are required for an

accurate evaluation of the parameters T., and K1

for a particular rope or cable. Indeed it is quite

conceivable that the true behavior of ropes and cables

requires a more complex model, incorporating a discrete

spectrum of relaxation times and associated K values.

In order to clarify the above remark we note that

relations (69) and (70) can be recast in the following

integral form in which E has been eliminated

T = • (eb 1 _ K • a(t - x)e-/¶1 dX (72)T2 °
0

where a e - co. The integral is a particular cor:-

volution of the function a(t). A natural generalization

of this relation is
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T K (eb- 1)- o(t -)G(k) dX, (73)
b (e

in which the generalized function G(k) can be repre-

sented in the.orm

n

G(X) = l (K./¶.) e-A/'j (74)
J=l

Relation (72) is a special case in which n = 1. Clearly

(73) has greater flexibility in respect to fitting the

observed frequency dependence of hysteresis in the case

of cyclic loading. For small amplitude, simple harmonic

variation of T or e at fixed co and frequency w,

relation (73) can be shown to yield the following

hysteresis

H =(75)

in which h (in) is the transfer function

h (w) = G(X) sin wX dX (76)
0

and K* is the dynamic spring coefficient. Using (74)

gives

Se
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I n
h (w) = (7 ,7,)) 2 ]

S3 =1 [1+ 3-

As an example, suppose n = 2 with

K = K2  and T2 = 10 •.

SIn this case the function h.(w) possesses a very broad

range of w over which it is nearly a constant (Fig. 14).

There is some indirect evidence that this behavior may

[ be closer to reality than that implied by the simpler

(n = 1) model. However, lackin- really definitive

evidence for this, we will adopt the model delineated

j " by (69) to (70) in the remainder of this study.
I

.5

I !

I!
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IV. ENERGY CONSIDERATIONS

1. Energy Equation for a Mooring Line

The equation of motion of a mooring line in vector

form was given by (15). If we form the scalar produc

of V with this equation we obtain

S[. (m + m I1 1 V-2 a
I Bn ma) -a •a

= " - w k'V + R'V ,(78)

where for simplicity we will regard ma and w as

constants. The term w k-V can be written as 6(wz)/t

where z is the elevation of a material point of the

line at s,t and wz is an effective potential energy

in the water per unit of s.

Now consider the term V-2T/Zs. This can be

written as

V-zV = T-(V T) (79)

=P

SI

1.
I!
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Furthermore, since V = •r/6t we can write

- = -E (*)

or

using (22). Now 6a/6s = 1 + c where e is the

elongational strain at s,t. Hence we find

S T +(l + 6)W (80)

Moreover T = T T and since 6T/Zt is orthogonal to

T, it follows that

T .- = T .(81)
- ME

Thus from (79) and (81), the energy equation (78)

takes the form

T (m + ma) ,- ma V+2 -,z}

-1- 1

- +T = • (v'T)+R-v, (82)

e

i¶

- - ______-- ,--!'----- ___
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where V is simply the magnitude of V. It will be

recalled from the previous chapter that the elastic

energy Ee is a function of at least three different

strains (C, a, nad Co). It follows therefore that

6 Ee 6E 2e 6E 6§ 6E 3c0

However, since e and co enter only in the form

(e - co) then 6Ee/6eo =- 6Ee/•. Also using (46)

we find

e = 84

ttr

Consequently the energy equation finally takes

the form

S(kk +p +Ee) =

-N (A~)2 T (85)

in which

I- ,

1~%
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Ek = mVs+ m V 2

S 2  a Vn

(86)

Ep = w z,

where V 2 VO - VT . Each of these energy functionsnT
represents energy per unit material coordinate (s).

The kinetic energy includes that of the mooring line plus

that of the effective added mass of water, which is

related to the normal component of motion of the line.

2. Energy Supply aeld Loss for the Line

If we integrate (85) with respect to s from the

anchor point to the point of attachment on the surface

vessel we obtain

L LA

SE ds = + R'V ds

S~L L €

)2 ds - T6 ds,(7
0j N (ft2 ds T -t (P
So 0

L
where E ds is the total mechanical energy of the line

(kinetic, potential, and elastic energy). The term

S(V )L represents the rate of work done on the mooring

I line by the ship. The integral involving R'V is the

e-
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L

net work done by the water on the mooring line per unit

time. The remaining two terms represent rates of energy

loss (or more correctly, rates of energy conversion

from mechanical to unavailable thermal form). The- are

related to the non-equilibrium processes occurrir: within

I i.the line (hysteresis and permanent strain). Tta latter

terms are always of one sigi: for clearly neithier (I/Ct) 2

nor •eo/•t can be negative. 1iowever, 6o /t can be

zero if the range of T for klven co is suitably

limited. On the other hand (•/3t) 2  can vanish only

under static conditions.

[ If the water is nominally Foc rest (U = 0), then

the term R-V is negative ard represents a rate of

energy loss to the water by form drag. In this case[ a steady state of 05namic energy of the line can be

maintained c.ily if (V'T)L is positive. Clearly in the

deep water where U is negligible R-V will indeed

tend to be negative and hence lead to damping of trans-

verse oscillations in that region of the line. The

energy loss terms related to (Cg/St)2 and 6e,/]t ,

on the other hand, are effective in damping longitudinal

waves in the line.

I
I'
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It can be shown that for cyclic variation of T

the mean value of N(a/Ct)2 is simply H/P, where

SP is the period of cycli.ng and H is the hysteresis

defined by (37).

e
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V. MOORING LINE EQUATIONS IN CHARACTERISTIC FORM

1. Geometrical Considerations

Let x, y, z be a fixed Cartesian coordinate system

with origin at the anchor point and with z representing

elevation. Let i, j, k represent the associated unit

vectors for this fixed coordinate system. The natural

coordinates are defined in terms of the local orientation

oi' the mooring line at material point s at time t

(Zajac, 1957). It will be recalled that T is a unit

vector tangent to the axis of the mooring line at s, t

and in the direction of increasing s. Now let 4 be a
a A

anit vector normal to k and T with the direction of

k x T. Moreover, let v be a unit vectcr normal to T
A A A A A A

and • with direction 4 x T. Thus V, P, T form a

mutually orthogonal, right handed, set of local coordinate

vectors.

Let e denote the zenith angle and 0 the azimuth*

angle of the local unit vector T relative to the fixed

Cartesian coordinates (see Fig. 15). Note that these

angles are not coordirate angles of the position vector

• More precisely 4. is the azimuth of the vertical
plane containing vector T, as measured from the x axis.
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Fig. 15 Schematic illustrating the local coordinate
system for a mooring line and its relation
to a fixed Cartesian frame of reference.
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of P but rather of the orientation of the tangent at

point P. From the geometry it can be shown that the

relations between the local coordinate vectors and the

fixed reference ccordinate vectors are given by

v = I cos e cos 4 + j cos e sin I - k sin e,

S= + cos ,(88)

T = isin e cosI + j sin 8 sin +kcos 0

The orientation of V, T, ¶ in general vary with s along

the line at. given t or with t at fixed s. Using

relations (88), it is easily established that

dv = .L cos B d§ - T d8

d = -v cos dl -T sin e dl (89)

d; = vde + sin e d.

2. Kinematical Relations Involving the Dependent Variables

The vector V, which represents the velocity of a

material point of the mooring line, can be represented

in the form

V=V V+ + +V + ¶ (90)
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in which V and V are normal components and V
V iT

is the tangential component of the velocity. The

acceleration of a material point is given by

6V ()V A ~ ()A V
-V +

6v+ + VI + C2.1T (91)

However, the turning vectors like a/• t can be evaluated

in terms of ZB/•t and 4/•t using (89). The resulting

relations for the acceleration is

V +V + V

+ V (Cose T~)
V

+ V ( v + sin•# (92)

This relation will be useful for recasting the vector

equation of motion into the natural component form.

-?
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A relation entirely similar to (92) can be obtained

for WV/6s, in which the time derivative terms are re-

placed by derivatives with respect to s. However, we

have already found that 6V/6s is related to €e/6t and
a/At by relation (80). If we now write CT/At using

the last of relations (89) and equate coefficients of
~ j "corresponding unit vectors in the two different expressions

for 6V/6s, we find the following (prognostic) relations

for 8, I, and e:

( ). = + V cos6 # (93)

(1 + e) sin -as = + (VV cos e

+V sin ) AS , (94)

V= S - g- Vd (95)

These are purely kinematical compatability relations

among the dependent variables 9, 4, e, V, V1 , and Vi.

Moreover they are relevant only for the transient state;

in the case of equilibrium conditions they are satisfied

trivially.
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Relation (95) can be interpreted in the following

wey. Suppose we solve for WV /as and integrate over

the full range of s. This yields (since V (o,t) =0):

L L
V (LIt)= P ds + sine t -

+ VV ) ds. (96)

As a special case, suppose ae/•s and 6*/Zs vanish.

This implies that the line is trailght and hence -(96)

implies that a positive tangential velocity can exist

SI at the end of the line only if the line stretches. On the

other hand if the line is curved, then part of VT

i at the end of the line can be due to the effect of "taking

up slack" in the line; this is represented by the second

integral in (96).

Relations (93) and (94) can be interpreted in a

somewhat analogous manner. Specifically the line can

have a normal component of motion at its upper extremity

if the line has a progressive tilt with time or if it

experiences a flexing.

Sii

I
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The remaining kinematical relations of importance

I are those relating the Cartesian coordinates of a
material-point of the line to the natural coordinates.

First of all we note that

6r V (97)

it. A

where V is expressed in natural coordinates by (90) and

r = xi + y + k. (98)

Using (88), (90), (97), and (98) we find

Vx V, cos cosi -V1 sin + V sin e cosi, (99a)

= VV cos 0 sin I + V cos j + V sin8 sin •, (99b)

IT

6z
S=-Vv sin 8 + VT cos e (99)

We can also employ (22) to obtain relations for the

derivatives of x, y, and z with respect to s. Using

(22) and (88) yields
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S(l•) sine cose (lOa)

= (1 + e) sin e sini , (1Ob)

z= (+ e) cos e (100c)

For the case of steady equilibrium conditions, the latter

set of relations are useful. Either set of relations can

be used in the transient problem.

3. Equations of Motion in Natural Coordinates

The vector equation of motion (15) contains the, Iii(term 2I/s which can be expressed in the form

T- -Ts (lO1)

where or/os is the local vector curvature of the line.

Using the last of relations (89) we find

~21§
7 Zsv =+ sin 8 I-L (102)

Also from relations (88) we get

k sin v cos T (103)

S(= - .--- -- - - -
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The residual force R., given by (18), contains the

terms aU•/at which can be rewritten in the form

Tt - a + U. (104)

It will be convenient to denote by G that part of R

which does not depend upon 6T/ht. Accordingly

R = G- ma T U. (105)

and

= x (Un vn) + r x (Un Vn)

+ (md + ma) 3- ma T Ca T) , (106)

where

x -(p/2) Cd D (1 + e) Un - Vnl

(107)

r x Ti cos (ws t + 6)

Finally we note in analogy to (102) that

ý& v s in e . (108)
r-T at t

I
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Consequently using (15), (92) and the above relations

of this section we obtain the following component equations

of motion

f+m • + V - V Cos
(m +ma) TtoT

(109)

-T~ = wsine+G

(m + ma) [t + (Vv cosB8+ V, sin 81~

- T sin s = G , (110)

and

•V1Vm•-t [ V + ma.(v UV) ]•

-[m V + ma (V -U)] sin e

T- = -Wcos8+G . (Iii)

The components of G in the natural coordinate system

are as follows:

e
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[.= x (U -%) - ir (U. - V,) + (md +

S=x (u V4) + (U V )+ (md + ma) U. (112)

where U, U, U are the natural coordinate componentsI

of the vector )U/•t.

It is supposed that the U is prescribed in terms

of its Cartezian components, Ux, U Uz. Using (88)

we find that

U = Ux cos 6 cos f U cos sin U sin -

U - -U sin + U cos, (113)
pL x y

Ur Ux sin 0 cos § + Uy sin sin +U cos C .

Moreover it is supposed that Ux Uy, Uz are prescribed

functions of x. v. Z' nnd t. Hence they are implicitly

related to s, t thrcugh the dependent position coordinates

of the mooring line. The functions Uf" U'" and UT
are related to their Cartesian counterparts Ux, Uy and

TT through equations similar to (113).
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Finally we note in passing that the evaluation of the

coefficient x requires the relation

IUn-VnI -- [ (U - )2 V ) 2 1-/2 i (114)

4. Characteristic Form of the Mooring Line Eqaations

in Natural Coordinates

In the natural coordinate representation we have

the following danendent variables: Vv, V, VT, 9, e , T,

and c. Each these is a function of s, t. They

are governed by the kMnematical relations (93), (94), (95)

and by the dynamical relations (109), (110), (111). To

these relations, we add the diagnostic equation of state

S(69) relating T to f; plus the two additional variables

g and co, the latter two being governed by the prcg-

Snostic relations (70) and (71). This gives a total of

nine dependent variables and nine equations. We can

also add to •..ese the three relations (99a, b, c) or

(lOOa. b, c) governing the three position coordinates

x, y, z.

Thus, in summary, the general three-dimensional

transient mooring line problem as formulated here (aside

from upper end conditions) involves eleven prognostic

"-e
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relations involving the twelve variables

V0, V, V, ep §, T, e, t, co, x$ y. z

plus one diagnostic relation involving T, e, , and co

Each of the prognostic equations is of quasi-linear form.

For example, referring to (109) to (111) we note that all

derivatives of the dependent variables enter linearly,

their coefficients being functions ofithe dependent

variables but not of their derivatives. Likewise the

terms Gv, G, and GGT are functions of the dependent

variables but not of their derivatives. Any quasi-linear,

hyperbolic system of n equations in n dependent

variables but involving only two independent variables

(s, t in this case) car be recast in a characteristic

form, which facilitates integration of the system (see

for examnile, Freeman, 1951).

The transformation leading to the characteristic

form of the equations is outlined in Appendix B. The

resulting equations are as follows:

dV +B - d G /(m + m( a)

along

- . . .i. . . . . . . . . . . .
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ds = ± [T/(m + ma) (1 + c) GI/2 (115b)

where

SB = (V cosO + V sin)

; (1 + )T/(m + ma) ]1/2 sine ; (115c)

dV + (G +w sine)•- +B2  dt mm•
d r2dt : (m + ma)

cos 8 (116a)
+ V 9 CO dt "( - )

along

ds 1/2 (6b)
dt - + [ T/(m + ma) (1 +e)]I/6

where

B•2  V T [(1+ c) T/(m + ma)]" 2 ; (i16c)

9
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S1/2 (G-wcos) +

77 dt m

+ dV + dV+ +
+ B • -+. 4- + 7 e+ B6 (117a)3 t 4d dt 6 "d

along

dsds (Y/m)1/2 (llTb)

where

Y = K e b (c - 11) (l1T7)

+ + + + +
and B, B 4 , 5, Bf6 , P are functions to be defined

later; finally

dt (c e- (118a)

along

dsdt 0 (1:8b)

t
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and

=t S(T, co) ,(119a)

along

ds 0 (l19b)

where

(F (T) - o)/+o, if co < F (T)

s(,o0 if co F (T). (119c)

Moreover, from (69)

. K +bT + bK1
£ c= co+ L ( K (120)

which implies that Y has the alternative form

Y = K +bT+ bK (121)
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The coefficients B. to B6 are given by the

following relations:

B ma (m+ ma) Y1/2 U) (122)B3 MR +_ , -. () (v-m •

B+ ma (m + ma) Y 1/2E: i 47=+ mzj ( N V U) (123)

+ ma (V v UV) 1/2
BmZ T (b + maa) VT (Y/m)

(124)

+ m (V-u- )
B B6 =Vsin-- a a u [T6 mZ

+ (m + ma) VT (Y/z)1 1 2 ]..s±• 8

ma (m + ma) U )cos8,+z ' pmZ (Uv V - U W (Y/m)I/ os

(125)

where

(m + ma)

Z a (1 + )Y -T (126)

-I-

(.S
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Moreover, P is given by

(Y/m)I f - (e - co -g) + S(T, CO)
InT

a[ (v- ) (w sin +-)+(V -G ) U.

(127)

To these relations we fda equations (99a, b, c) for

prediction of the Cartesian position coordinates of the

line at s,t. An alternative is to employ (100a, b,c)

to evaluate these quantities at a given instant from O

and r.

Relations (115) and (116) govern the transverseF wave modes in the line, while relations (117) govern the

longitudinal wave modes, the damping of which are

governed by (118) and (119). The nominal signal speeds

S~for the two modes are:

for transverse modes,

C' = [T/(m + ma) (1 + e) ,]1 / 2 • (128)

for longitudinal modes,

C = Y/m]1/ 2 (129)
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Note, however, that these refer to speeds in the sense of

ds/dt. The true speed in the vertical direction can be

evaluated from the relation

dz _ t •d-• + .• c, (130)

where C is the value given by (128) or (129) depending

on the wave mode. Using relation (99c), (100d) and (130)

gives

dz (1 +e-) C cos -Vv sin 8 + V cos , (131); ~dt=

along ds/dt = C.

F. The transverse and longitudinal wave modes are

[ •coupled through certain non-linear effects. In particular

the longitudinal waves are coupled to the transverse waves

through the terms involving the time rates of change of

v, V , and • which appear on the right hand side

of (117a). These coupling effects are significant only

if do/dt and d§/dt are large. Now since

do
dt +C AS (132)

I

I.
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Swhere C = + (Y/m)I/ 2  for this case, it follows that

de/dt can be large if the curvature, 60/6s, is large

even though the local rate of change of 8 may be small.

In a similar manner, df/dt can be large if the pitch,

I/2s, is large. It is also possible for the angular

velocity /)t to be large for rotary motion of the

line. We note as well that the v-component, transverse

wave modes can be coupled to the p-componert, transverse

modes if d§/dt is large.

5. Magnitude of the Signal Speeds

The upper limits on C' and C" are determined

respectively by the ultimate values of T and Y. Wilson

(1967) gives the following values for 6 x 37 galvanized

steel cable of nominal diameter D0 (inches):

-2 2
m = 4.9 x 10' D (slugs/ft)

Tu = 7.3 x 104 D 2 (lbs)

=6 2
Yu = 6 x 10 Do0  (ibs)

CU = 0.0.

fU

-e



93

For three strand, regular lay nylon rope:

m = 0.9 x lO-2 Do2 (slugs/ft)
0

Tu 3.1 x 104 D2 (lbs)

0Yu=8 x 10 5 Do2  (lbs)

S= 0.52.

The latter three values are taken from Paquette and

Henderson's data.

The value of ma is given by

22

If we assume that D2 (1+e) = D andthat C
0 a

we get

ma = 1.1 x i0-2 Do 2 (slugs/ft),

where D is in inches.

Using (128) and (129) with the above data yields

the maximum values of tb, signal speeds as presented

in Table 2.
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TABLE 2

MAXIMUM SIGNAL SPEEDS

Steel Cable Nylon Rope

Transverse (CI) 1010 ft/sec 1000 ft/sec

Longitudinal (C") 11,000 ft/sec 9400 ft/sec

These speeds are independent of the diameter of the rope

or cable. Also the maximum speeds for nylon rope are

seen to be very close to the corresponding speed for

steel cable. Finally we note that the longitudinal

speed is about a factor of ten larger than the speece

fo:r transverse waves.

6. Characteristic Form of the Mooring I.ine Eiujations

in Cartesian Coordinates

The characteristic relations in natural coordinates

as given in (115), (116), and (117) have a serious potential

pitfall which can lead to difficulties in application.

For those conditions where 0, -the solution forL +
becomes indeterminate. Note that B = B- when o = 0,

so that only one relation is obtained from (115). Even if
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L
we were to app:ly these relations only to those cases

where the mean value of e differs from zero, it is still

possible for the instantaneot's value of e at a particular

point s to be zero due to the presence of transverse

waves.

This difficulty can be circumvented by rewriting

relations (115) to (i17) in Cartesian form. The details

of uhe transformation are lengthy, but straightforward.

This is outlined in Appendix C. In principle we use

relations (88) plus the definitions

a = cos • sin a

= sin sin e, (132)

y = cos e

Note that a, 0, y are si'mply the Cartesian components

of the vector T (see (88)). Moreover, they must

L satisfy the relation

O 2 + + = 1 (133)

and hence only two of these components are independent.

Let VW, Vy,, V, represent the Cartesian components

of V. Clearly these are related to x, y, z by

{4
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6x/6t= vx,
2y!3t = Vy, (134)

6z/6t = Vz

Also, a, y are related to x, y, z and c by the

relations

6XAS = (l + C) c,

C)ylCs = (l + C) , (135)

6ZS= (l+ C) y

Note that these satisfy (133) automatically since

p( ) + ( = ) + (ry/Zs) 2 + ()z/Cs) 2 • (136)

The transformed versions of (115) to (117) in terms

of Vx, Vx, Vz, Zp ., y, e, and T can be shown to have

the fullowing form:

dV x Y aY ddVz + C)Tll/2 da

idt ( at d) t L ( )

=(G nx +w ax y)/m' (137a)
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along

ds(137b)
dt -+ [T. (i + 1/ ]/2(

dV dV (1 + e)Tj1 2~
- +dt - mdt

S(Gy + w /m, (138a)

along

d = + [T/ri' (1 + e)] /2

and

dVx dV dV _-i/ dTdIT-+ 0- dIt + Y "" z 7 (MY)-/ d-L
cit dt dt

= (G - w y)/m + (Y/m)1/ 2 [Ki ( - - YTI

+ S (T,e 0 )]+8- , (139a)

along

ds 1/2d = + (Y/m) .(139b)



for convenience. The terms Gxanid G nydenote the x

fl
a aN

and y components of the vector G - T G, . The term a±

denotes a residual of secondary importance which will

hereafter be ignored; it is given in Appendix C and the

justification of neglecting it is discussed.

The quantities Gnx, ny and GT in terms of

Cartesian variables are as follows

~x = X L (1 - ?)(U - v) a 0(U -v m)-y(Uz - Vz)3
x x y y

+ r [L(Tz -Vz) - y(Uy - Vi)]

+ (md + ma)[('- Ux -cLP UY- ayU•] , (lla)

G x [- c(U - v)+ (1 - 2)(Uy -Vy) - y - V7 )]

+ r [y(Ux - v.) - a(uz - Vz)]

+ (md + ma) C-. UX + (1- p2) U - O U , (!41b)

G md (a U+ +yU) . (141c)

T Xy Z

e
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In the evaluation of X the term lUn- VI now must be

determined from the relation

(1n -{[ Lc2 )(U, - V) - CL(U -VY)

2
- aY(Uz - VZ)] + [I-•(U - vx)

+ (1 - 02)(Uy - v) - O(uz - Vz)]2 }l/2. (142)

Equations (137) to (139) plus (118) and (119) involve

the prognostic variables Vx, V", V. a* O, T, •, and CO .

All other dependent variables like y, ,, Y are related to

these through the appropriate diagnostic relations already

stipulated. The Cartesian form of the relations have the

advantage that the relations remain determinate- when a.

or 0 vanish (i.e., e = 0). Moreover, they do not require

the evaluation of trigonometric functions, which can be

of economic advantage in sequential numerical integration

operations. However, (137) to (139) do have the disadvantage

that the time derivatives of Vx, Vy, and Vz enter in

all relations. This implies that the numerical integration

procedure based on (137) to (139) is more complex than that

based on (115) to (117). Clearly this is the price one

must pay to be assured of a determinate system under all
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conditiuns. The numerical method of solution based on the

method characteristics for the Cartesian variables is

outlinedin the subsequent section.

It will be remarked in passing that relations (137)

to (139) can be derived from the original equaticns of

motion in Cartesian form by a procedure similar to that

outlined in Appendix B. This procedure in fact was em-

ployed by the writer as a check on the transformation

discussed above, but for a less general case.

7. Numerical Procedure Using the Method of Characteristics

We consider in this section a numerical method of

evaluation of the prognostic variables which is adaptable

to high speed digital computers.

Let Q(j,k) denote any of the dependent variables

at discrete values of s and t defined by

sj= JAs. 0 = , l,2 .... N

(143)

tk k At, k= 0, 1, 2...

where As = L/N.

9t
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The set of prognostic variables includes Vx, Vy,

Vz9, ,L, T, o, and eo- It will be supposed that each

of these is stipulated for each j at k = 0 as initial

conditions. The strain £ can of course be obtained from

(120) and the initial position coordinates x, y, z for

each j can be obtained by simple numerical quadrature

using (135) with the condition x = y = z = 0 at j = 0.

Alternatively we could supply x, y, z for each j at

k = 0 and evaluate a, 0, e using (135) then get T

from (69). The main point is that only eight of the above

variables can be specified arbitrarily at time zero.

As end conditions at the sea bed we consider that

x(O,k), y(O,k) z(0,k) are zero for all k. For the upper

end conditions we will, for the time being, suppose that

V x (Nk), Vy (N,k), and Vz(N,k) are specified for all k

as fluctuating values with zero mean value (no net moticn

over an extended period of time).

The discussion of the computational procedure at a

general time step is facilitated by reference •o Fig. 16.

We assume that Vx, Vy, Vz, a, 0, T, g, and co have

already been evaluated for each j at time level k.

We wish to evaluate these same variables at the next

time level k + 1 for a common value of j (point B).

The lines AnB, n = 1, 2. . . .8, denote the character-

istic paths with slope ds/dt = (-i)n+l 0n associated
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j+4

J+3
'16 I I

J+2 0

,I I

S I.

s/bs A2  (A4= A2)

A AILB (A8= A7 )

A1 (A 3 = A1 )

J-1

: J-2

A5
J-3

k k+l k+2 k+3

t/At

Fig. 16 Schematic of the characteristic paths
in the discrete s,t grid.
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with the eight different prognostic relations obtained

from (137a), (138a), (139a), (118a) and (119a). Specifically

C' for n = 1, 2, 3, 4

C n for n 5, 6 (144)

S0 for n = 7, 8

where

C1 = (T/m' (I + ))l/2 ( 1 45a)

CH = (Y/m) 1/2 (145b)

Y = K + bT + bK (145c)

The subscripts on C' and C" imply appropriate average

values of these variables for the path in question, the

first estimates being interpolated values at the points

A.n

The numerical computation scheme described below

involves a successive approximation procedure similar

to that employed by O'Brien and Reid (1967). This

scheme requires appropriate interpolational relations for

the variables at points An. Let a represent the values• n

of s/As corresponding to points An. If the Cn are

appropriate average values then
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an= 4+ (_l)n C At/As. (146)n n

For values of J near the end points it is possible for

an to fall outside the admissible range of j. In this

case special procedures are required and are allowed for

in the following discussion.

Let Jn be the integer truncation of an such that

if a > 0,
n

Jn a < Jn+ 1. (147)

Moreover if

0 : an < N, (148)

then a given variable Q can be estimated for points An

by linear interpolation as follows:

Q(an, k) - (an - Jn) Q (Jn + 1, k)

S(Jn + 1- an Q (Jn" k). (149)

n
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A

SIN

'B

k A I n +1

131

a1<0or a5< 0 a 2 >INora 4> N

Fig. 17 Schematic illustrating special condit'ions
for the characteristic paths near the end
points of the system.



io6

If (148) is not satisfied, this implies that the

characteristic line in question intersects the boundary

j = 0 or j = N at k + bn where 0 < bn < 1 (see

Fig. 17). The value of bn can be evaluated from

bn = (an - e) (an- j) , (150)

where Je= 0 if an < 0 or Je =N if a n N The

value of variable Q at point An (Fig. 17) can be

estimated by the interpolational relation

Q(Je k +bn) " bn Q (Je k + l)

+ (1 - bn) Q (Je" k). (151)

Clearly this requires that Q be known at the end points

for the time level k + 1. Accordingly the calculations

of all eight prognostic variables should be carried out

for the end points first, making use of the end conditions

to replace those relations corresponding to characteristic

paths for which an falls outside the allowable range.

The discussion of the ntuaerical versions of the

prognostic relations is greatly facilitated by employing

the following index notation to represent the prognostic

variables:
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= 'V z, , , ), (152)Vx y z

where m = 1, 2, .8. Thus Q - V, Q, Vy
and so on. The prognostic equations all coi:tain terms

of the type B d Qm/dt which can be approximated by

". [B (j, k + 1) + B (An)] [Qm (j, k + )- (A)]/8t

where B(An) or Qm(An) denotes the value of the

variable concerned at point -An and 6tn denotes the

time step appropriate to path n. Specifically for n odd

F-M (ank if a n 0(a k) o

Qm (An)= (153a)

(0, k + bn) if a < 0,

while for n even

'A' (an, k) if a~ < N

(N, k + bn) if a > N (153b)
nn
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while

Stif 0 g a < N
h

bt (153c)

b(i bn)At if a < 0,

or an z N.

By employing the above approximations in each of the

prognostic equations (137a), (138a), (139a), (118a) and

(119a) we obtain eight algebraic relations for the
eight unknown 1 at j, k + 1. These can be .:ritten

in the systematic form

8
"H• Zn,m m ' ~m"(J" k) Qm (j, k 1) l P (j,k) (154)

ij• for n = 1, 2, . . .8. The matrix of coefficients M

and the terms P depend upon the variables Q. atn
level k and level k + 1. These functions are given

I in Appendix D. We note that the matrix Mn, has the

following structure:

AI

Ei

! I - - - - ---"- -

I _ __
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m=1 2 3 4 5 6 7 8

n 4= M4 M 2  M43 -1 0 0 0 0

5 2 M21 M22 423 1 0 0 0 0

3 M51 M3 2  533 0 -1 0 0 0

"" M41 M42 1443 0 1 0 0 0

65 52 153 0 0 -1 0 0

F 6 M61 M62 M63 0 0 1 0
7 0 0 0 0 0 0 1 0

8 o 0 0 0 0 0 0 1

F'

Thus (154) can be reduced to the simpler system:

3

. (M'n,m + M2n-l,m) = (P2n + P2n- 1 ) (155a)
m=1

3

%+3 Pn =2n-1) 2n, m 12n-1,m) %, (m55b)

for n = 1, 2, 3; and

"[ = 7, P8 (155c)

1~
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Relation (155a) represents three equations in the three

velocity compcnents at j, k + 1; this set is easily

solved by elimination cr by Cramer's rule. Once Q4 , Q2 ,

QQ3 are obtained, then •, •, T are readily evaluated

from (155b) and §, eo are given by (155-).

In carrying out the calculations it is understood that

first estimates of the Cn" P and M are obtained
W Pn n,m

by taking k(i, k +i) on which they depend (Appendix D)

I as the values m(j,k). Relations (155a, b, c) then give

first estimates of Q(j, k + 1); the latter are in turn
used to re-evaluate the terms, C , P . and M . Re-

-i n" n,m

peated use of (155a, b, c,) with the new coefficients,

then yields better estimates of the •(j, k + 1). This

process is repeated until the difference of successive

estimates is less than some acceptable fractional error.

Three or four successive approximations usually suffice

for sufficiently small time step At (O'Brien and Reid,

K !1967).

[ At the end points j = 0, N we have assumed that the

velocity components are stipulated. At j = 0 we employ

K • only those prognostic relations for which a • 0. These

[ correspond to the partial set n = 2, 4, 6, 7, 8 of

relation (154). Since the velocities Q1, Q, % are

given, one can easily solve for the remaining unknowns.
41

!I



At j = N we must employ the prognostic r lations for

which an < N; these correspond to the pa: -al setn7
n = 1, 3, 5, 7, 8. As pointed out previou y, the

calculations for j = 0, N should preceed T,;se for

intermediate points.

When all eight prognostic variplles have been

calculated at time level k + 1 for all j, then the
position coordinates x, y, z for each s at this time

level can be evaluated by simple numerical quadrature

using the relations

"c= (I+c a.

z/s = (I+) )(156)
6<= ( +--) y

(l-~ ~1/2

with the conditions x= y =z =0 at s =0.

The whole procedure is then repeated for the next

time level. This process is carried out for some pre-

selected number of iterations, depending upon the time

span of interest and the selected value of At. The only

limitation on At and As in this method is that of

accuracy and resolution; the method if inherently stable.

Si.

, m- }
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Accuracy is improved in principle by selection of small

values of both As and At. However, economy of computation

plus recognition of accumulation of round-off errors

implies some compromise value for these parameters. It

is recommended in such computations that As be taken as

about 100 feet and that At be of the order of 1/10

second. These values are based upon the considerations

of the possible modes of motion treated in Chapter VI

via linearized perturbation appr'3ach.

i.

I-

i

[K___
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!i8. Generalized Upper-End Conditio~n

• ~In the preceding discussf..,;" it was assumed that

Vx, Vy and V z were stipulated as a function of time at

the upper end of the line. A more general condition was i

iI implied in Chapter II (section 5)1, in which the dynamics

S~~~of the surface vessel is taken into account. The purposeoftsseinisoshwowuccndinsanb

I imposed in place of the simple upper conditions of the

;ii preceding section.

•;iLet qi' (1 1 , 2, 3)-denote the three Cartesian-

components (x, y, z respectively) of the anomoly* of

S~transletional velocity of the center of mass of the

i ~surface vessel, arid let 01 denote the Cartesian components

S~of the anomoly* of rotational velocity of the vessel. It

iii •will be assumed that the x-axis is taken such as to be •

•: i parallel to the mean orientation of the longitudinal axis

• ~of the vessel. This will correspond to the mean orientation

•i ~of the surface current for normal mooring with a single line. ;

! Then in the notation of Section 5, Chapter II, we

S~require, for the case of single mooring line, that along

S~dsidt = 0 at j = N (S = L): •

I * These are anomolies from the velocities which the
i vessel would have in the absence of the mooring line.

g~

¼
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dRil

dt (157)

dt -ni • 158)

dql
- Ti/Mi -2 pi qi

= a 2 R +TO 0 A/Mi] (159)

"•[Ji/E -2
dt i

S+ ji° (160)

where 1=i, 2, 3; and

V = q' + n' x + F(t) . (161)

In (159) Ti are the Cartesian components of the unit

vector T (previously designated -, , y).* The term

F(t) is a prescribed vector function of time denoting the

potential velocity of the point of attachment of the

mooring line on the vessel, in the absence of the mooring

* The reader is cautioned that there is a potential
ambiguity in the semantics here; the scalars a., p, xhave a meaning quite distinct from the vector components

xii of Section 5, Chapter II.

91Lij<
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:1

line. In terms of the notation of Section 5, Chapter II,

F(t) +a 10. The terms J. are the Cartesian
components of a vecto: torque which depends upon T ^

and the angular displacement of the vessel (see Eq. (31)).

One can readily write finite difference counterparts

4 of relations (157) to (160) analogous to those for the

prediction of g. These allow the evaluation of the

Zi vector velocity at the new time level via relation (161).

Having the velocity components at the new time level for

j = N then makes the system equivalent to that described

in the preceding section. It must be noted, however, that

the prediction of q! and f! depend on the new T and1 1
T at j = N. Hence a successive approximation procedure

I• is required similar to that described in the preceding

section. The initial conditions on the components

.Ri" *" q1 and i must be prescribed. Bear in mind,

however, that these variables are pertinent only to the

single position j = N.

The generalization of the above procedure for the

case of multiple mooring lines is straightforward following

the system indicated in Section 5, Chapter II.

I

I



V VI. LINEARIZED PERTURBATIONS RELATIVE TO

A COPLANAR EQUILIBRIUM CONFIGURATION

1. Dynamic Equilibrium State

The oceanic current U in general consists of:

(1) a quasi-permanent horizontal flow which decreases

slowly with increasing depth; (2) horizontal tidal flow

which is nearly uniform with depth -but changes slowly

in direction and speed with time; and (3) rapidly

fluctuating three-dimensional motion associated with

surface gravity waves. The latter phenomena, which has
I

I• a spectral band width from about 0.3 to 6 rad/sec, is

confined to a relatively thiin surface layer. As a

practical approximation we will suppose that the wave

motion, while directly governing the motion of the vessel,

does not directly influence the mooring line. In effect,

we are implyiig tnat the fluctuating part of the current

U is confined to a layer comparable to the draft of the

vessel and that over the bulk of the mooring line the

current can be considered steady, at least for durations

of the order of one hour.

I
e
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On the other hand the line itself is not static

but is in a continual fluctuating state of motion in

response to the motion of the vessel to which it is

secured. Now the drag force is non-linearly related to

the relative motion (Un - Vn) of the fluid with respect

to the line. Accordingly the average* configaration

of the line (or lines), for given steady current U and

a stochastically stationary time sequence of ship motion

with given variance, will not in general be the same as

the steady state configuration of the line with the same

current U but with the ship fixed in its mean position

(i.e., no wave action). The effect of the fluctuating

motion of the line, even though its mean value is zero,

is to produce a greater net drag than that due to U

alone. This can be quite marked if the amplitude of

V exceeds thp magnitude of U.

Since the average configuration depends upon the

perturbation of the line through the non-linear drag

force, we will refer to this configuration as the dynamic

equilibrium state. It will serve as the reference state

in the definition of the perturbation variables of the

system. In particular we will denote all reference

* If the motions of the line are stochastically
stationary then time averages are equivalent to expected
values in the probability sense (Wiener, 1950).

I--__ _
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state variables by a bar over the symbol. This can be

interpreted as the average value of that variable at

Ji imaterial point s for an ensemble of possible con-

figurations associated with the current U and a

stipulated ensemble of ship motions.

In regard to the current U, we will suppose that

(below the vessel) this is not only steady but also

horizontal and coplanar at all depths. Accordingly, if

the statistical distributions of the component velocities

of the line have zero mean value and are symmetric about

their mean, then we should expect that the dynamic

equilibrium configuration will lie in a vertical plane

parallel to the current U. Actually this also assumes

that the mean force exerted on the vessel by the combined

action of currents, waves, and wind is in the sam..

direction as the current. We will take the x,z-plane

to coincide with the plane of this dynamic equilibrium

configuration.

Specific relations for rT/6s and 2/cs for the

mean state are given in the following section in which

the perturbation equations are derived.



II

K •119

2. Quasi-Linear Perturbation Equations t

The equations of motion expressed in a natural

coordinate system based on the mean configuration of the

line are the most convenient for analysis of perturbations

of the line. These can be derived in a manner similar

to that employed in section 3 of Chapter V. In formulating

thece relations we must be careful to distinguish between

an instantaneous vector like T and its mean value for

material point s. Since the overbar notation is comber-

some for vectors, we will denote the average vector T

as T. at given s and similarly for v and u- The

mean unit vectors vo and To lie in the x,z-plane

while wo is parallel to the y-axis.

SLet V,,',. V1, V' hereafter denote the components

of V in the fixed local coordinate system defined by

the vectors Vo, 1., To at point s. With this

understanding the vector accele:-ation is simply

-atTt V0+ P+ To (162)

The vectors v 0 , po, are related to the Cartesian

reference vectors by the following relations in analogy

to (88) with e replaced by 9 and 0 = 0:

eI
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, .coso k stn ,

SA - .(163)

o= i sin +k cos

Now let V', T -' denote the perturbations of the vectors

v, T, , in sense that V = o + V', etc. It will be
understood that the perturbations are small, i.e.,

IlVI << 1, 1II << 1, and IT'I << 1. If we also let

1 8' and #' represent associated perturbations of 8

and 4 where 1-'! << 1 and I''l << «1 then we obtain

i- the following approximations based on the use of (89):.

Co --I-j v' = I• c s l "o 0

II = -voo cos e 4, sineI' (164)

SI A A Ao

"' "v o 0' + po sin 0 4 *

SNow referring to (15) we note that the term

S)V /Ct can be approximateO by "To Wv,/t neglectingT

products of perturbation quantities. Moreover, referring

to (105) we see that the quantity U'.r/7t is of second

41
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order if U is of order V or less. Thus (15) reduces

approximately to

! (m +m )v (T T)a;o• ='II(Mm ma).Tao L = ~ .1 Lwk G. (165)

Now consider the first term. on the right-hax-,.• side of

(165). Letting T = T+TV where T' <<Y and

T To + r' we obtain after neglecting quantities of

second order:

6(T )( (Tv (166)

Now from (163) we find that

I.

= To *rs

kin 0 (167)

i-s =' 0 ,s

n= 0 (

Hence using (164) and (167), relation (166) takes the form
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'; I12

( ( sin ') A T' + T' (168)

Now using (162), (163), (165), and (168) ..t folows

that the component relations associated with (165) are

(m +ma) -- -- =• + T' -- + w i

+ G , v0 , (169a)

m ) v4-- . (169b)

at -i-WE- W Cos 76s -s•69c)

By definition the mean values o, the perturbation variables

are zero. Hence by averaging (169a, b, c) we get

0 = + w sin + GA •o (170a)

!A
0 G (1!70b)

*1
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0 -W COS -, (170c) Io-

the average of G To being zero. These are the relations

defining the dynamic equilibrium configuration.

The vector G was defined by (106) and (107). We

note, first of all, that this simplifies somewhat w'ith

6UJ/6t = 0. In order to put the remaining part in a

tractable form we will take

-V .- (U cos - v,) vo + (- v,) o . (171)

Furthermore, the term r T x (Un - Vn) will be approxi-

mated by r To x vo U cos 0. This implies that "strumming" 4

-of the line by vortex shedding is allowed only in association

with the steady fl'w U, while that associated with the

oscillatory motion of the line is neglected*. Accordingly

we have

G =o f[ (I: .os e -vVI') + (V ,)f1/

x (U cos - V') (172a)

*Indeed the phenomenon of vortex shedding is some-
what confused in respect to oscillatory relative flow.
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A A2 .21/2 VG = f[(U cos - v ') V +v')11 [-v
L V

T+ 7 U cos cos (ws t + s)], (372b)

STo = 0, (172c)

where

f = (p/2) ca D (1 +)

The latter coefficient can be expressed in the alternative

form

Cm2 Cd md

(173)

where md is the displaced mass of water per unit

material length.

The residual equations of motion are obtained by

subtracting the corresponding relations in (169) and

(170). For convenience we will use the abbreviated

notation

Y 'I
- _ I
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sin § , (174)

GV' G vo G vo,

(175)

Gp G AO

I:

The term 0' in fact represents the perturbation of the

y component of T as defined by (132). The resulting

dynamic perturbation relations are:

m - + T') G , (176a)

m'-- + ', (176b)

in T' ---e' Be- (176c)

where m' = m + ma. The relations (176a, b) are only

quasi-linear since the terms G ' and G I are, in
V I

general, non-linear functions of the normal components

of velocity of the line. All other terms are linear

functions of the perturbation variables.

To these relations we add the following linearized

versions of the kinematical relations (93) to (95):-1
-I
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(1 + + V ' (177a)

( 7 3 (177b)

= - (177c)

Finally the linearized versions of the load-strain relations

(69) to (71) are taken as follows

T , - \ (178)

T' YO Kct- ', - (179)

where co is regarded as a constant (the maximum tension

being assumed such that co > F (Tmax)) In the above

relations e' = e-e, g' = - where 7 = e- Co

and

Y = K +b+T bK , (180)

which represents the dynamic spring coefficient for the

mean conditions at s.

j i
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3. Aszociated Perturbation Energy Equation

If we multiply (176af. b, c) by V ', V ' and
V

VT' respectively, then multIiply (177a, b, c) by T 9'

-T t', and T', then multiply (178) by-K 1 (€' -K')

and add the resulting relations we fin! the following

energy relation after using'(179) and collecting terms:I "

[ , (V 12 + V 12) + T12

1 1+" s [(em '1 + V V ) + Tm VT2

1 }:, i+ [~ (i + T) g (e,2 + aa)]

,-•= [ (e, V , + •, v ,) +T V, v-,]

S+ v, + G ' V -- (e, - ) (181)

Comparing this energy relation with (85), it appears

that we have introduced a new form of energy term involving
§ ((012 + p12). Actually the last two sets of terms in

brackets on the left sid.. of (181) represent dynamic

elastic energy associated with the perturbation. Only

- I part of the anomaly of elongational strain is represented

in the term •'; it is that pa,'t related to motion

_ _ _ _ _ _ _ _ _ _ _ .- -



128

I!

parallel to the reference configuration. If transverse

waves exist relative to this reference, then second order

elongational strain occurs which is proportional to

S(82 + B,2). Thus the term (1/2) (1 + 7) T (012 + B,2)

is the elastic energy associated with transverse perturbation,

while the term

[ 2 Yo t - K2 e ' + K1  g ]

is the elastic energy associated with the longitudinal

perturbations. Note that this will always be positive

as long as TO > K, which is certainly the case (see

Chapter III).

We note that terms involving the curvature of the

mean configuration (re/;s) which were present in (176a, c)

(177a, c) have -no contribution in the above perturbationIf
energy equation. These terms lead to coupling of, and

SI hence energy exchange between, the transverse and

longitudinal perturbations but do not account for any

loss or gain for the total dynamic energy budget. OnIi
ii , the other hand, the last three terms involving drag effect

j Iand hysteresis indeed do significantly influence the

I total energy budget.

~iI

ii
I

~ii _ _ _ __
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If the perturbations represent a stochastically

stationary process then the average total energy is

constant in time (or at least only slowly varying)

and hence the average of the terms on the right side

of (181) should produce a balance. The drag terms are

particularly significant in this balance of energy loss

and energy gain per unit time. This will be considered

in a statistical sense in the subsequent section.

4. Statistical Considerations of the Drag Force

In order to arrive at a rational approximation

of the highly npn-linear relations for the drag force,

we will consider certain critical statistics associated

with this force for a simple, yet realistic, stochastic

model of the line motion. The motions of the sea

surface and of the surface vessel, in response to the

surface waves, can be considered to represent a Gaussian

process in the first approximation (St. Denis and Pierson,

1955). We will suppose, moreover, that V ' and V '
V

are also of Gaussian character. The principal additional

assumptions are that these variables are statistically

independent and that they have the same variance 62

and zero mean value. In general a 2  will vary with

position s on the line. The assumption of equal
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"variances is perhaps the most stringent of the assumptions,

but considerably simplifies the analysis of the statistics

related to the drag force.

For simplicity of notation in the present analysis

we will let

U cose -x,

U cos -V ' -x, (182)
V

Vt '-y.

Since V ' is assumed to be Gaussian with zero mean and
V

variance 0a, then x is Gaussian with mean x and

variance 02. Moreover the joint probability density of

x and y, in view of the foregoing assumptions is

F(x, y) 2 c . (183)

In the above notation, the component of G in the

direction vo is

G . = f (-e + y x . 84)

i:

[.1 §
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Its mean value is given by *

- • - fr(x2+ /x ( + y2]/2 e 2

dx dy. (185)

By making the transformation x = r cos a. and

y = r sin a, the integral is converted to the form

"cc 27 -(r2 + 72- 2 " r cos a.)/2 a2G A.F r r 3 cosa e

0 0
dx dr. (186)

This integral can be evaluated in terms of known functions.

The result is

G vo02 e--2/4 Q

+ (C2 + 1) Ii (C2 /4) (187)

where

* We are ignoring any variation of drag coefficient
with velocity in this analysis.
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~/ U -- 0/S =TAos Y
c /(188)

CFV V 12i

and Io(z), I 1 (z) are modified Bessel functions of

order indicated. From the properties of the latter

functions it is readily shown that the mean drag force

has the- following limiting forms

f (U cos T)2, for U cos -» >> a

G vo -. (189)

j F12 f a U cos, for U cos << a.

In the latter case, it is evident that the standard

deviation (a) of V or V ' has a very definiteV

control on the curvature of the equilibrium configuation

through relation (170a).

Another quantity of considerable concern is the

mean rate of energy dissipation by the drag force. This

is given by

B f (U cos - V1)•2 (V,1) 21/2

f[(U+ ( 1~1 )2~ [(V 1)2+(V 1)2]

(190)

I *
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In terms of the notation (182) this can be written in the

form

I

= f r [(x 7)2 + y j

f (r3+ ' _ 2 F -7 ), (191) .

y21/2*where r = (x 2 + y2) Again using (183) to evo...uate

the averages in the above relation we find

D f e Ae [C2 + 3) Io (/14)

+ 11 Q/4)], (192)

where C is as defined in (188).

We can now define an effective dynamic drag coefficient

f v such that

D = f v (V 12 v 12) (193)
V

Now V 12= V 12 = 2 in the foregoing analysis
V

and hence
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j -C2/4 + 3) I1o 2/4)

II
!IiC Q2• (c/4). (194)
lI

This has the limiting values

U Cos e, for U cos >> »

V -

L -- ~for U cosB<o (195)

A plot of v/a versus C is shown in Fig. 18. This

indicates a very rapid transition from one limiting

form to the other, centered at z = = 1.88

(i.e., U cos = 1.88 0). The behavior of the functIon

SG - 60 /f a2 C is indistinguishable from v/a for all

practical purposes.

, IBased upon the above analysis we will adopt the
following approximation of the components of G :

"" -o A- f N (U cos - (196a)
V

G - f v V + T, f v U cos cos (ws t + 6) . (196b)71

I
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1.01. ..

1 I..

0.2 .......

0.2 4

0..1 1.0 10

U cos 9 a-r

Fig. 18 v/a versus b cos T/a based upon a
Gaussian stochastic model for drgg force.
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Thus

4

G = -f v V' (197)
V V

where v is at most a function of s. This approximation

with v as given by (194.) leads to the appropriate mean

drag and also the appropriate rate of energy dissipation

by drag force.

5. Perturbations of a Nylon- Moorin Line about a

Straight Equilibrium Configuration

* IIn the case of nylon line, the net weight per unit

length in water is negligible and can be ignored for all

practical purposes. From (170c) this implies that T

is essentially uniform over the whole line. Now from

(170a) we find that the curvature of the equilibrium

configuration is given by the mean drag force per unit

length divided by T. If the latter is large, the mean

configuration will tend to be nearly straight. In this

limiting case of negligible 8"/ps, there is no coupling

between transverse and longitudinal oscillations of the

line. Hence, these modes of oscillation can be analysed

independently. We will consider this situation in the

present section.

I
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In the considerations of the transverse oscillations

we will examine two limiting cases in respect to the drag

force. These are the cases where U .'os > 5 a and

L U cos < 0.5 a (see Fig. 18). In the first case the

term v is independent of a and the problem is entirely

linear. In the second case v is directly proportional

k " to a which in turn is a function of s dependent upon

the statistical behavior of the solution for V '.
V

Clearly the latter case is a non-linear problem which must

be treated quite differently from the first.

Case A. Transverse Modes (U cos > 5c): In

[ this case v 1 U cos g, which will be treated as a

constant, at least over that portion of the line where

the transverse oscillations are significant. For realistic

values of f v, we will find that the transverse modes

are not significant at depths greater than about 1000 ft

below the vessel and hence the approximation of uniform

v seems justifiable in respect to the analysis of these

perturbations.

( 6 With uniform T and zero mean curvature, relations

- 176a)-and (177a) reduce to
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m' . - T-- f v V (198)

( ) - ----2-(199)
6t 6s

Eliminating e, between these relations yields

3 

(200)S'3s m' v 2O

where

C = (Y/m' (1 + -))/2. (201)

This has elementary solutions of the form

V' A e i(wt +ks) (202)
V

where

Sk (U2 - i f V W/m')/C, (203)

If w is regarded as real then k has the roots
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"i k -- , )(204)gI

where

x• I kI cos cx/2

I= I sin C/2 (205) i

in which

IkI w[ 1 +(f v/m' w)21l//C 1  (206)

and

a= tan- (f v/m' W) - (207)

"Note that X is an odd function of w while • is even.

A more general solution is obtained by forming a

linear combination of solutions of the type (202) for the

two admissible values of k for given w. Such a

solution satisfying the condition V = 0 at s = 0
V

for all t is

I.
I-5

____________ ___ ______________ -



V V ':A Les Cos (Wt K s +p)

V t  - e-'scos (wt -s + p) (208)

in which we have allowed for an arbitrary phase angle p.

The first term in the brackets represents a progressive

"wave traveling downwards along the mooring line, its

ampitude decreasing exponentially in the directior of

travel. The second term is a reflected wave traveling

upwards along the line and attenuated exponentially in the

direction of travel, if the attenuation is sufficiently

large, or the line sufficiently long, then the reflected

wave may not even exist. The amplitude of Vv' at

the position of the vessel (s = L) can be shown to be

given by

A (2 cosh 2 • L -2 cos 2 K L)I°2 (209)

If L >> 1 then th.Is reduces simply to A e PL.

I-
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Fl

! • = 'j,',7 (210)

t¶

I.I

F Ur nylon line, the factor in parentheses is approxi.LLtely

•' i /r. Suppose v is only 1 ft/sec and w = 27r/10 rad/sec-

ii, icorresponding to a 10 second 1,,-riod excitation. Then

:i };Ifor a 2 inch diameter line

fv 3

I W11 I

/Using relations (205) to (207) and taking C= 700 ft/sec I

(corresponding to a equal to about hlf of the ultimate

strength) yields

X f 1.3 X i0-3/f

S-0.9X 10 l3/ft "

•The wave length is 2u-/x or about 4800 ft; on the other •
hand an e-fold attentuation of emplitude occurs in an

arc length of a i/o or about (2 00 fandt. The atCt1 -7enuation of

(corespodin to equl t abot h~lf f th ultmat

strenth) ield
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amplitude in one wave length is about 99 per cent. Thus

for all practical purposes, the transverse waves are

critically damped in one wave length.

The above example serves to demonstrate the extreme

importance of drag effect on the transverse oscillations.

Typical values of fv/m'Ijw exceed unity. In the

limiting case of very large values of this parameter we

find

jN ~ ~i1 { f v ( 1- + 1/2 (211/2f (l (211)

for f v/m' jwl >> 1. This situation corresponds to

negligible inertial effect (the term m' oV '/6t being
"V

negligible in ý198)).

The solution for V ' given by (208) is valid
V

provided that the excitation at the upper end is periodic

in time (with period 2ir/w). A more realistic condition

at the upper end would allow for the representation of

V ' as a general time sequence with stipulated statistical

properties. We will employ here the Fourier-Stieltjes

integral representation as follows:

V ' (L ,t ) : S e l et dF (w ) (2 1 2 )
V-0
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where dF1 (w) is a stochastic complex variable havIng

the following statistical property

dF 1 *(w) dFI(w') = 6'(w- w') t 1 (w) dw , (213)

where 6'(x) is the Dirac delta function, dF1 * is the

complex conjugate of dF1 , and 41 (w) is the variance

spectrum associated with V '(L, t). The variance of V 'V V

at the upper end of the line is

a 1 2(L) = f ý(w) dw • (214)

The function dF1 (w) also has the following symmetry

property

d() = F,*() , (215)

which assures that the representation (212) leads to

real values of V .

For other positions on the line, the generalization

of (202), taking into account that the waves are essentially

attenuated completely before they reach the anchor

(-IL » 1), is as fc±lows

: (uL>> i)



V '(s't) f els L) ei(Wt + KS) dF1 (w) • (216)

This reduces to (212) at s = L. From (216) and (213)

we find that the variance of V ' at any position s
V

is given by

o• j, (s) = fe 2 *(s - 1 (w) dw (217)

where • is nearly proportional to IjIw/2 see (211).

In the case of transverse perturbations in the

lateral (y) direction, the appropriate equations (under

the conditions of constant T) are

)vt
m= -fvV' f v P (218)

(= -+- (219)

where P represents a random function associated with

the vortex shedding. We can represent this as follows

"9
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e'wt dQ(w) (220)

-cc

where

dQ*(w) dQ(w') (- ') iI((w) dw (221)

and

j .s(w) dw (i U cos j)2/2 . (222)

If the vortex shedding were exactly periodic then its

spectral function would be

s()= '(II - wS) (1 U cos T)2/4 . (223)

However, the above representation for the vortex shedding

will allow some smearing over a finite band width.

Eliminating 01 between (218) and (219) and using

(220) yields the non-homogeneous relation
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).46

fv i w e d Q(w) . (224)Ii

An appropriate solution is

I V '(s,t) r e(S - L) ei (wt + ts) dF2 (w)

tI-

I• 1 + f ( 1 + i m 'w / f v ) -1 - e - L) + ies

vi~
-e-e S ins] e dQ(w) (225)

where

dF! *(w')dF2  6(w- ') *2 (w) dw . (226)

I
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Moreover, dF2  and dQ are regarded as statistically

independent for all w; this assumes that the input by

the surface vessel is completely indepdent of the vortex

shedding and vice versa. Considering chat 4L >> 1,

the solution (225) reduces essentially to zero at s = 0

while at the upper end we have

V' (Iýt) = r e iwt dF (227)

which is governed by the motion of the vesscl.

The variance of V- ' at any s is given approximately
LI

by the relation

y22 (5) e 2 P(s -L) *2 (w)dw

--w

_j [1 + (MI' W/fv)a - { 1 - 2[(ell (s - L)

+ e-PS] cos Rs + e 2t, (s - L)

+ e s (w) dw . (228)
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Again considering that pL >> 1, the above relation gives

essentially zero value at s = 0 and at the upper end

f we get simply

j~ a(L f* 2 (w) dw (229)
-CO

Case B. Transverse Modes (U cos < 0.5a0:

Relations (200) and (224) are still valid for this case,

however, we now have

• I
<Iv (230)

at least under the condition that the variance of V and
V

V have the common value a at position s. We have
U

seen in the previous case that for intermediate and large

I idepths below the vessel, the oscillations in the lateral

directien may actually dominate. Hence the present analysis

is limited to the upper reaches of the line where a02

remains comparable to 02 assuming that these are nearly

equal at the ve.osel.

I
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As before we will employ the representation (212)

fcr the input sequence V (L, t). For other s we then
V

propose a solution of the form

V (s,t) = M (s, W) ei(wt + N(s,w) dl (w) , (231)

where functions M(s,W) and N(s,w) remain to be determined.

In order for this form to be consistent with (212) we re-

quire +-hat

M (L, w) = 1, (232a)

[ N (L, w) = 0. (232b)

It will be observed that the solution (216) for case A

is simply a special case of (231) in which M is an

exponential function of s and the phase function N

is linear in s.

Using (231) and the statistical property (213)

we find that the variance of V is given by
V

a1 2(s) = MM2 (s, u) ) (w) dw , (233)
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where the spectral function -L (U) is presumed to be

stipulated.

Relation (231) will satisfy (200) provided that

- w2 M = C1
2 (M" + i 2 M' N' + i M N"

- M (N') 2 ] - i f v M/mI' , (234)

where M', N' imply derivatives with respect to s. The

functions M and N are considered real. Hence upon

separating real and imaginary parts of (234) we obtain

the following two relations:

)2  M" 1/2

and

(M2 N')' M f v w/m' C • (236)

Moreover from (230) and (233) we have

""(3 s) 1/2 (237)

2M )
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The set of equations (235) to '(237) represents a

highly non-linear, integro-dJfferential system for the

unknown functions M and N. An exact general solution

is not known. However it is possible to obtain approximate

solutions for two limiting cases. These are based upon

the magnitude of the non-dimensional parameter fv/wmt.

For fv/wmt' << 1, then inertia dominates over drag

effect and we should expect that M will be a slowly

varying function of s. This implies that (w/C1 )2

dominates over the term M"/M in relation (235). Thus

N' 1 + w/C, as a limiting case. Using this in (236)

leads to

(M2)I -I- +If v/m' C , (238)

whi-rh does not involve w explicitly. Thus M is

independent of w for this case and consequently (237)

and (214) yield

3 TViv = a (La) Ns). (239)

Using (238) and (239) leads to the differential equation

-33
M (M4)' 3 12 f (L)/m'C, (240)

*1 --
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in which our choice of sign confines attention to waves

i1ropagating downwards along the line. This assumes that

II Ithe line is sufficiently long that the transverse modes are

completely damped before reaching the anchor point (a

rather stringent assumption for this case). A soluticn

of (240) satisfying condition (232a) is

M = I1 + •1 (L s)- (241)

where

7. -fa(L)/mC, 1 . (242)

Finally, from (233), (214), and the above result we get

for any *i(w):

[2(s) 1 + •,• (L - s)- 2 a-(L). (243)

, Note that the attenuation coefficient • is proportional

I to a(L) according to (242).

For the case f v/w m' >> 1, then drag effect

dominates over inertia and hence we expect in this case
*- 2that M"/4 greatly exceeds (w/C 3 ) . This is the normal

situation which would be expected for nylon line. This

I Iimplies from (235) that

ij

-4 4;|_ ) __". . . . . . . . . . . . . .
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N' - (M"A4) 1 /2, (244)

where our attention is again confined to waves propagating

downwards along the line (and attenuated before reaching

the anchor point). As a generalization of the solution

(241) we will consider in this case that

M = (1+ A 2 (L- s)j-n , (245)

where * 2  and n are to be determined for this case.

Relation (244) gives the following associated N'

function

1/2 )-i.N' [ [n (n + 1)] (1 + * 2 (L - s) (246)

Substituting the last two relations into (2:6) and using

(237) leads to

[n (n + 1)11/2 (2n +1) f 2 1 + (L - -2

V' ( f ~I~ wl / [1
1/2

+ (L, (-s)l-2. (w) . (247)

-2 -~--2Z~2-.A Z•
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This relation can be satisfied for all s if n = 2,

but only if t, (w) is a very narrow spectrum centered

at some frequency wo. As a rough approximation for the

case of a realistic spectrum tj. (w) we will take w

in the coefficient on the right-hand side of (24-7) as the

mean value, Wm, defined by

W m 1- r (w) dw 248

Then from (247) with n = 2

3 /2 fa (L) Wm 1/2
m' C. . (21-9)

The phase function caN, be obtained from (246) as

N (s) = V6 in (1 + ! (L- s) ). (250)

Finally, the variance of V V at any positiori s is

given approxf_. tely by

a2 (s) A [1 + . (L - s)]% .(L) (251)

for this case, where A2 is given by (249).

e
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The results for the approximate relations for a (s)

for transverse waves are summarized in Table 3. All

cases assume that the line is sufficiently long that the

variance is attenuated to a negligible value at the

anchor point. Also the approximation is made in each case

that the attenuation rate is based on the mean frequency

wm, characterising The spectrum of motion at the top

of the line. The term r, defined in Table 3 is a

non-dimensional quantity in which v is either U cos

or 1.88o, depending on the case. The usual conditions

in application, at least for the upper reaches of the

line are for r >> 1, a > 2 U cos e. An example plot

of a vs (L - s) is given in Fig. 19 for the following

conditions:

Cd -n' -

D = I inch, m = 27r/l0 rad/sec

a(L) = 3 ft/sec,
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TABLE 3

APPROXIMATE STATISTICS FOR TRANSVERSE MODES

IN THE EQUILIBRIUM PLANE

U cos > 5 a(s) U cos < o.5a (s)

v CosI v= 1.88 a(s)
S~Any r

a(s) e -•(L -•)a(L) a(s) 1 [L + •f(L -s)]-n (L)

« 1 rw1/C 1

I n l

1/2u 1/2 wl,j
S•> 1 •u = 0.707 -= 0286 r(L)

n 2

- f v/mr w
m

r

9
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where U cos • is assumed to be less than a/2 at all

(L - s). This requires virtually zero value of U for

depths greater than 3000 ft if the results of Fig. 20

are to be valid

Case C. Longitudinal Modes: Relations (176C) and

(177c) under the condition of zero mean curvature reduce to

m - (252)

(253)

which together with relations (178) and (179) govern the

longitudinal waves, in the absence of mean curvature.

Also for T uniform then YO is independent of s.

These relations 2ead to the following differential[ equations for V'T

T 0 T

1 f)2 V I (YO - 1 )ý 62V- I~

( C)t2 m 6s2 J -"

I: i

e"
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A solution of this relation is

i(wt +ks), (255)T

where

k' = mj (1 + i WT,) .•(256)

For most applications Y. greatly exceeds K.,. Under

this condition, k has the approximate roots

k = + [(w/C2 ) - i v] , (257)

where

V " (W/C2 )(K1/2Yo) WTlI l + (WT3)] (258)

and

C2 [ - K1 (1+ (wI)2l]/m}1 (259)
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The attenuation coefficient v is a small fraction of the

wave number for these modes, hence we must definitely allow

for reflection of the longitudinal waves at the anchor

point so as to assure V ' (o, t) = 0.
*T

The generalized solutions for an ensembe of possible

V at L is accordingly
T

V' (s,t) = f[evseiW(t +s/C2)

-OD

e- e W(t s/C2)'B-l/2d F3(w), (260)

where

d F. (w) dF. (w 1) =61(w -Wi) 'ý~3 (w) du, (261)

and

B 4[sinh2 (vL) + sin2 (wL/C 2 )]. (262)

The function 43 (w) corresponds to the variance spectrum

of V t at s = L, its integral over all w being the""
variance of V t at the vessel. The variance of V

T T

for any position s is given by
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s{ :h2 (vs) + sin2 (WS/C2 a()d. .(263)

- sin (vL) + sin2 (wL/C 2 )

Clearly this vanishes at s = 0 as required by the lower

boundary condition.

From (252) and (260) it follows that

T' =mS(+ iW/C) [eVS e i w(t + s/C 2 )

+ e-S e i w(t - s/C2 )] B-1/2 d F, (w) • (264)

Thus the variance of T' using the statistical property

(261) is, at any position s

(TI )2 m2 ____ _ sinh2(vs) + cos 2 c(wsiC')2

(- [F(w/C 2) 2 + v2  sinh2 (vL) + sinz (LIL/C2 )

ys (w) dw • (265)

Since "V << w/C2  and vL << 1 for the normal range of

frequencies (even with L 104 ft), the above relation

car, be tdpjJp.LoUA.LWM~teU by
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(T') = m2 f 022 cos 2 (ws/0 2 ) y3 (w) dw. (266)
f (vL)2 + sin2 (wL/C2 )2

As a check, we note that if .(w) is ,2onfined to

very small frequencies, implying slow rates of stretching,

then the above relation with the use of (259) reduces to

-approximately

CT') 2  (YO K 1 )2 f r w 2 ý, (w) dw 2067)
-O

for any s. Now since .3 (w) represents the variance

spectrum for V ' at s = L, then ur%- (w) is the
T

variance spectrum for elongational displacement of the

end of tne line. Consequently
w

777 f2 r ~(268)

and

=(Y YK E 112 Y (269)

I

e

Ii 1 _
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as we should expect for slow rate of stretching. Here

(Yo - K1 ) corresponds to the quasi-static spring

coefficient, whereas Yo is the dynamic coefficient for

the given mean tension T.

On the other hand for a broad-band spectrum, re] tion

(266) indicates the possibility of resonant conditions

at frequencies corresponding to zero value of the sin

term. These frequencies are w + w where

wn = n 7r C22/L, n = 1, 2, . . . (267)
Ln

For C. - 7000 ft/sec and L - 14,000 ft this gives

W n Y n w/2 rad/sec. Near a resonant frequency

sin2 (wL/C 2 ) [(w - Wn) L/C 2 1

(268)

cos2 (wL/C 2 ) - 1

The contribution to the variance of T' at s = L

due to a resonant response centered at + Wn is given

approximately by

A n= 2 m Yo 3 'w)dw
[ n (vL)2 + (w -(tn)2(L/C2)21

S(269)



where it is understood that 4s (-w) = V3 (w). Now

Srniy-o:2 Wn if r, 14 sec as found in Chapter III

for nylon line. Hence near the resonance

an d (270)( 1/2Y )

2 iYm)1/2

Since the resonant response has a very narrow band width

(of the order of K.A/Yo T, rad/sec) we can take ' at

the value wn in (269) as a suitable approximation. We

then obtain upon carrying out the integration

S "--j (wn ) , (27 1 )
K1,L 2

for resonant response at s= L.

I I

9, 1 - __
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6. Perturbations of a Nylon Mooring Line Relative to a

Curved Equilibriium Configuration

It was noted previously txtat the longitudinal modes

and the transverse modes in the plane of the equilibrium

configuration are coupled to some extent if the equilibrium

configuration possesses curvature. In the following analysis

we retain the approximation of uniform T and for simplicity

we will also suppose the curvature do/ds has a uniform

value, The pertinent coupled equations are (176a, c),

(177a, c), (178), and (179) in which G ' is given by
V

(197). In the latter relation we will consider only that

case where v is "miform. The above relatic'-s then possess

solutions of the form

(V I V ,, , = (AT, 1 A A1,

• " el(ks •±+wt
X: e (272)

provided that the coefficients A satisfy the fcllowing
n

algebraic re.Lations :

[• (iom' + fv)A: = ikT A3 + (dc/ds) Af (273a)

,i~mA2  .- ik A, -T (de/d/s) A3 , (27,b)

, + 7) A ik Aý, , (dfý/ds) . (273c)

iwA- A (cf/ds) A, (2-3ci)

(I + iw-) As As , (2'(3e)

A,, YO A5 K, A6 (271-)
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The last two of these relations yield

Y (1 iw 1 ) A+ (274)

The remaining four relations using (274) will lead to

non-trivial values of A if k satisfies the characteristic
n

relation obtained by requiring the determinant of the co-

efficients in (273) to vanish. This leads to the following

possible roots for k2 :

1,2 ( k + k2
2) + (d2/ds)2

(ký2 - 2)2 + (k0 2 + 'k,2 + k + 1• k2/k,2 )

1/2
X (de/ds)2} / (275)

where
k02 = • i+•• (276a)

k+ )(w m' - i fv)/= , (276b)

k2 a (i + i W T(0 )6c)
I2 YQ (1 + iW7 r2 (26c
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As a special case we note that for do/ds = 0 the

two roots for k2  are simply k12 and k.2  which

correspond to relation; (203) and (256) in the previous

analyses for transverse and longitudinal wave modes

respect` ;e..v For typical conditions:

Jk02/k122 1

. .1-2 ' 10- , (277)

i (-d/ds)/• 1 2 10o- 2

Accordingly, in the case of relatively small curvature

(275) reduces approximately to

~k2

k2

[k2 - (M*--- - i mý 'd• (278)

for transverse and longitudinal modes respectively. One

effect of the curvature is to increase the rate of

attenvuation of the longitudinal waves. For the case of

fv/m>• 1

k 2 (taC2 - i Vt) . (279a)
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-d-ere v' is the attenuation coefficient

V V + d-), (279b)

v being given by (258) and C2  by (259). The longitudinal

waves can lose energy not only by hysteresis, but also by

net transfer to the transverse waves by coupling due to

the curvature. The transferred energy is ultimately

dissipated by form drag.

Returning to relations (273) we find the following

approximate relations among A,, A 2 , A3 , A. , making use

of (277):

For transverse modes:

- (i/k 1 )I)ý('/ds) Al,

A 3 (k/w( + C)) A3, (280)

A4 ' = - (i m W/k, 2 )(l + k1
2 /kO 2 )(d,/ds) A' I

For longitudinal modes:

e
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A1 ' = -(ik 2 )(kO2/k, 2 )(de/ds) A"

A3: -(i mw/k 1
2 )(1 + k 1 2/kO2)(de/ds) A2 " , (281)

A4 " = (mw/k 2 ) A2 ".

Note that if df/ds = 0 then A2 I, A4 ', and A1
1 ', A3"

would vanish.

The general solutions for V V and V ', which
V 1.

are accurate to first order in de/ds and yield essentially

zero values at s = 0, are

Vv'(st) = ik(s - L)

+ k- dds ! 2 [e-ik - cos k seiWtdF3 (w)

(282a)

and

VT '(s,t) = fsin ks eiWt dFs(w)

-i d ' "t + ik.(s - L)do e1 eWt dFI (w)• (282b:))
k k~ds

-CD.
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whiere dF1 (w) and dF3 (w) remain to be determined in

terms of* the repiesente.tions of V t and V ' at

s = L. In the above relations

(283)

k = W/Ct2  iv

where p.L >> 1.

Let

SV f(L,t) e eiw dH2 (w) (284a)
[ " V

V '(L,t) e e dH3 (W) (284b)T .

where

di ()dI{1 (w) (w w')(w) dw

(285)

dHi*(w) dH3,(w') = 6 w(w- ,')43(w) d1 .

In (285) • (w) and ý3 (w) are the variance spectra for

V V and V ' respectively at s = L. Moreover we

will suppose that V ' and V.1 at s = L possess[V
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a cross-spectrum *41 (w) such that

dilL *(W) dHi3 (w) - (W W9 *' 13(w) dw. (286)

If we now equatE (282a, b) at s = L with .284 a, b)

respectively we can solve for dF1 (w) and dF3 (w) in

terms of dH 1(w) and dH3(w). Inserting the resulting

relations in (282a, b) and neglecting terms of order

(do/ds)2 yields
03

V('(s,t) ei(s - L) eWt dH(w)
--m

+ds k2 k, W e~1 cos k,,s)
-ma

eiku(s - L)(e -ik lL C os •Ts•W eH(w) (287)

and

V '(s,t) = 2ss eiwt dHa(W)T" sin k,. Lds()

1*O

d ifeiki,(s -L) sin ks eiWtS -e e d sn.H. %(,,, (288)
ds ikul sin k 2 L
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The solution for T' to the saime order -f

approximation can be shown to be given by

T'(s't) = Cm S . J $ eost dH3, Wiksin 14Le dH()

R7sin ksL

- i(l + k1
2/k 2 ) eik (s - e) iWt di

(289)

The primary effects of the curvature are: (a) to

cause the transverse oscillations to reach a greater depth

and (b) to produce a somewhat greater variance of T'

at the upper end of the line compared to that which

would exist without curvature of the line. At inter-

mediate depths along the line, the contribution to the

variance of V ' by the first integral of (287) becomes
V

negligible (as seen in the previous section) and the second

integral gives a residual variance given approximately by
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2 CO

(V ( 2 (w) dw (290)

at mid-depths.

It may be remarked in closing that the effect of

curvature is of more significance in tlhe case of steel

cables where the net weight in water produces a relatively

greater value of curvature than for nylon line, other

conditions being comparable. In fact for nylon-line, the

simpler theory given in the pieceding section in which

curvature is ignored is probably adequate for most conditions.

Further application of the methods discussed heiein

would be profitable, particularly in respect to the use

of the generalized upper end conditions discussed in

Chapter II. Unfortu-•nately this is well beyond the scope

of the present study, but it is hoped that the present

study will serve as a useful guide in future research on the

problem of mooring line dynamics.
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APPENDIX A. EQUATIONS OF NOTION OF VESSEL

We wish to establish relations connecting the

motion of a moored vessel with the potential motion of

the sane vessel in the same( seaway if it were not moored

and not underway.

First, consider the equations of motion for the

unmoored vessel. Let X• (j = 1, 2, 3) ienote the three

Cartesian components of the position of the cer+er of

the mass of the vessel (relative to a fixed equiliba'iam

position). Let a. (J = 1, 2, 3) represent the com-

ponents of angular displacement about the m,.tually

orthogonal, principa.l axes* of the vessel. Assuming

the vessel is symmetrical about its mid-section, one

principal axis is normal to the plane of s:-rmetry and

the other two lie in the plane of symmetry. Under

equilibrium conditions it will be assumed that the

plane of symmetry is vertical and that the longifudinal

principal axis is horizontal. It will be assumed more-

over, that the motions are sufficiently small such that

the non-linear coupling effects of the translational

and rotational components of motion can be ignored.

• The principal axes are those fo which. the mom.nt

of inertia matr 7 car, be represented in diagonalized form.



1.g1-1 lo,,ing St. Do:nis and Pierson (1955), the linearized

equations of' motion for an unmoored vessel are taken

as follows (j = 1, 2, ):

M. d2 j/at2 + j. dXi/d1 +.. x. =K (A-1)

1. d%./dt2 -; N ida../dt + K.i aj. Hj' (A-2)• 3 j U' .3 ' 3(A

where the M. are the effective masses for surge, sway,

and heave (including the effectie added mass ,f water),

t-,a N. are damping coefficients associated with

v-4scous drag arid/or radia'ion of ship induced wa-ves,

the K. are restoring force coefficients (force per
U

unit displacement) and the F.1 are the components of3

exciting force due to wave motion and/or steady motion

of the water relative to the vessel. Similarly the

T. aTe the effective moments of inertia about the

principal axes of the vessel, tUe N' are damping

coefficients, the K are res'-)ring coefficients

(torque per radian) and the H.' ar-e components of3

exciting torque due to waves. It will be -nderstood

specifically that X,, X2 , X3  are respect.ively the

translational displacements in surge, sway, and heave
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moreover, 0. , 2 , M3 are respectively the rotational

displacements in roll, pitch, and yaw. Accordingly

KI , K2 , and K3  are zero; the only restoring forces

being those for heave, roll, and pitch.

We can rewrite (A-l) and (A-2) in the form

d 2
, j/dt 2 + 20j dkj/dt + 02 =j (A-)

2%/d ~dot, j ( A-3)

d2cOL'/dt2 + 20 da /dt + oy t2 (-h)d•~~~ a C+ ij

where

0 N /2Mj

•:'--N.'/21 •
j j J

(A-5)
O" : VK ý/I

-f F' '/M.
fj 33"

and

h'= H'/L
j 33j

The four sets of ccefficients 0j, ', a and a.

all have units of frequency; the 0 terms govern the

damping rate for free motion. The natural frequencies

is~
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(,a.a,9.Ins/se.ond), for tne case where 03 << 1, ' << 0

and 2 '<< 0 ', are given approximately by a3, cy and

0 2 (for heave, roll, and pitch respectively). Again note

that 01, ,2 and a3 are zero. It will be presumed

that all six damping rates and the three natural frequencies

for the unmoored vessel are known.

For the moored vessel we must include the effect of

the tensile force for each mooring line. Let Tk (t)

denote the tensile force exerted by mooring line k

(k = 1, 2•, . . .) at its point of attachment to the

vessel. Let Pk represent the vector separation between

the vessel's center of mass the the kth attachment

point (see Fig. 2 ). Recalling the convention for T,

we note that the force applied to the vessel by line

k is -T . Likewise line k exerts a torque given

by -pk x Tk" Let Tkj represent the jth Cartesian

component of the vector Tk and let Pkj be the jth

component of th3 separation vector Pk" the components

being referred to the same coordinate system as that

for and c. Then Pk X T-k has the componentsPk k

Jkj given by:

e%
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I - - pk Tk)

(pP. Tk. - Pk Tk) (A-6)

= (p: Tjr2 pk Tk)

If we now let R. denote the translational dis-

placements of the cent-er of mass for the moored vessel

and the angular displacements then the equations of

motion for the moored vessel take the form

d2 R3 /dt 2 + 20j dR./dt + a 1 R = fj - Tkj/Mj (A-7)

d2*j/dt 2 + 20j' d4j/dt + j'• 2 *. = hj -Jkj/I (A-8)

i'here Jkj is given by (A-6) and the terms f. and

h. are the counterparts of f.l and h.' for the

moored vessel.

Suppose (A-3), (A-4), (A-7), and (A-8) are applied

"for the same vessel and for the same sea state. Moreover

suppose for the urimoored condition, that the vessel is

not underway. It is reasonable to suppose then uhat the

mean values of the exciting terms f and h. are zero.
3 3
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This is not true for the moored situation. However, it

wil'l be assumed that the departures of f. and of h.j

from thei-r mean values are the same as f.t  and h.1

3 3

and (A-9)

h. -h. h ..

We expect that the mean values of the time derivatives

of R. and of 4.will vanish and hence

CF 3

(A-10)

Consequently from (A-3), (A-4), (A-7), (A-8), (A-9)., and

(A-10) we obtain the following relations fo'r the-anomalies

of ship motion inoauced by the rmourirlg line:

(d2 /d-t2 + 2$ d/dt + Q?~ R

L LT .' /M , (A-11)
k K
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(d2/dt2 + 2%j d/tdt + j'2) Sj

1- Jk '/I (A-12)
k tj j

where

R R 3 T kj T kj -kj,

(A-13)

3j 3 -j ,Jkj3 Jkj

It is understood that X. and a are prescribed

functions of t; these are the potential displacements

which w.ould exist in the absence of the mooring lines

for the same sea state.

To these relations we must add a kinematical

relation governing the orientation of the vectors pk"

For a rigid vessel the separation distances 1Pk1

are constant, however, the orientation is governed by

the vector angular velocity of the vessel, 0,

according to the relation

dpk/dt = X P (A-14)

The Cartesian components of f0 are given by d4 ../dt.

Hence (A-14) can be expressed in the following component

form:
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(d/dt) Pk2 = (d'e 2 /dt) Pk3- (d* 3 /dt) Pk2

(d/dt) Pk2 (d* 3 /Ct) Pkl- (d*i 1/dt) Pk3

and

(d/dt) pk3 = (d* 1 /dt) Pk2- (dq 2 /dt) Pkl (A-15)

The restriction has already been imposed that the motions

of the vessel are small. Consequgntly we may approximate

relations (A-15) by taking the mean values of the terms

Pikj on the right hand sides and obtain by integration,

using (A-13):

PRkl (t2' + a 2 ) P k3- + 3 pk2

Pk2 ( ' + 13 ) PklO - (ýi ' + a1) Pk 3° , (A-16)

Pk3'= (*•' + a) Pk2 - (02 ' + C2) R- 1
0

where

Pkj k - Pkj (A-17)

and pk.1 denotes the mean values of pkj
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Finally to the above relations we added the following

geometrical relation for each line

r = R + Pk + Ck (A-18)

where rk is the radius vector from the anchor point of

line k to the point of attachment on the vessel, while

Ck is a constant vector representing the radius vector

from the anchor point for line k to the fixed reference

point for the displacement vector R. The above relation

can also be written in the form

r ~ + R + pkI+x (A-19)rk k +R k '+

where rk is the mean value of r

We note in passing that the vector Pk can be

written in the form

Pk = Pk + ( + )x PkO (A-20)

This is consistent with (A-16) and (A-17).
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APPENDIX B. DERIVATION OF THE CHARACTERISTIC

FORM OF THE MOORING LINE EQUATIONS

The equations governing the local time rates of

change of the dependent variables VV, V , VT, 8, •, E,"

and co are given by (109), (110), (111), (93), (94),

(95), (70), aid (71), respectively. These equations also

contain the dependent variable T, however, we have the

diagnostic equation (69) relating T to e, g and co.

We wish to recast these equations in the form

8 -- dQn8 B 'Q = P, (B-I)

r__ n dt

along the path

ds C (B-2)

Here the . sigify the eight prognostic variables and

the quantities Bn, P and C are functions of these

va-iables. in general there will be eight possible
values cf the speed C (not necessarily all distinct)

and eight associated relations of form (B-l). All

[!-
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of the admissible values of C will be real if the

system of differential equations is hyperbolic, which

is true in the present case.

First of all, we obtain from (69)

T 3 o(B-3)Ts- = Y ( T.- TS-) - K2 s" B3

where

Y = K eb( - co). (B-4)

This relation can be employed in (111) so as to eliminate

any dependency on derivatives of T.

In order to put the system of equations in the

form (B-1) with condition (B-2), we form a quasi-linear

combination of the original set in the following sense.

Multiply (109), (110), and (ill) by bl, b 2 , and b3

respectively;,multiply (93), (94), and (95) by b 4 , bs,

and be respectively; multiply (70) and (71) by b7 and

be, respectively; and add the resulting equations. The

combination is quasi-linear in the sense that the co-

efficients b. through be do not involve derivatives

of the dependent variables. After collecting tcrms, the

result is:

- - - _ _ _ _ _
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m ()Vv ()vV 6v 6v
S[b1  m' • - b4  .[- + [b o m -

lb [~bm 21 [b, in VT. b3 X2 +(1 P )b 4 1-

(b Tb 4 V + beV.,.

b+ [ (- b1 m' V cos 8 + b2 m' X1 - b 3 X3 sin S

+ b 5 (! + c) sin 8) - + (- b2 T sin S + b 4 V sin

- bs X, + be V sin 6) -r

+ [be * - b3 Y T]- + [b 7 -r+ b 3 KIL]

+ [be •- + b3 Y - b, (w sin e + GO)

+ b2 Gj + b3 (- w cos 8 + G) + b0, (e - CO-

+ be S (T, co) (B-5)

Lt
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In the above relation

X, -V cos e + V sine,

v T

- m' V -ma U (B-6)

X3 m' V1 -ma U

{(F(T) - e 0 )/To, if co < F(T) (B-7)
S(T, eo)--(B)

0 if co ? F(T)

and

m = m + ma. (B-8)

The coefficients b, through bs are to be

selected such that

b4  = - C mb , (B-9)

b5 = - C m' b2 , (B-1O)

be = - C m b3 , (B-11)

b3 Y = -Cb 6  , (B-12)

b = Cb7  , (B-13)

b 3 Y = C be (B-14)
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(T b1 ~V b4+V be)

C (m' V b1 -X2 b 3 +(i+e)b 4 ), (B-i+)

and

(-T sin 0 b2 + V cos b4  X, bs + V sin ba)

C ( m'V cos 6 b, + m' Y b2  X. sin e b3

+ (1 e) sin 6 bs). (B-16)

The latter relations assure that each of the dependent

variables, %, in (B-5) enters in the form

which is the same as dQ%/dt along the line ds/dt = C.

Using (B-9), relation (B-15) can be simplified to

the form

(-T b, + v+, bs) = C (- X2 b3 + (I + .) b4,). G3-17)

¶ i
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Moreover, using (B-9) and (B-10), relation (B-16) can

be reduced to the form

(- T b 2 + V br) C (- X b3 + (1 + e) bS), (B-18)

provided that sin 8 does not vanish.
I .

Since the eight homogeneous relations (B-cj through

(B-14) plus (B-I1) and (B-18) contain eight parameters,

bn, plus an eigenvalue C, it follows that at least

one of the bn for given C is arbitrary. The eigenvalues

C can be evaluated as the roots of the eighth degree

polynominal in C found from the requirement that the

determinant of the coefficients in the simultaneous

system of equations for bn vanishIes. This determinant

in the present case contains mar.y zeros and can be shown to

lead to the following eighth dlegree polynominal:

C2 (Y - C2 m) (C2 ' (1 + e) - T)2 = 0. (B-19)

Therefore, C2  can have the possible roots

0, Y/m or T/m' (I +)

the last having a multiplicity 6f two.
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"For the case C2  0 we find that the relations for

b are satisfied if b1 =b•= b 3 = b 4 = b 5 = b = 0

f'or arbitrary b. and be. Thus for one of the two roots
C 0, take b. =1, be =0 and for the other take

b, =0, be = 1. This implies that we merely recover

relations (70) and (71) in their ori-inal form, as might

have been anticipated, since they involve only derivatives

of F and co respectively.

For the case C2 T/r.' (1 + e), one possible set of

b are found to be b2 =b 3 =bs =b 6 = b7 =be =0
n

with b, arbitrary and b4  given by

b4  = -C m' b.

Thus if we take b = I., then

b4  = + mT/(1+ /2

for (B-20)

C = + [T/m' (1 + )11/2.

A second possible set of bn for the case

C2  = T/m' (1 + e) is found to be b, = b 3 = b4 = ba=

b7 = be = 0 with b2  arbitrary and b. given by

°ii
2 I

e
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b5  = -Cm' b2 .

Thus with • = 1 we get

05= n;[ T/( + )]I/2

for IB-2])

C = + (T/m' (1 + e)]l/2

Finally for the case C2 = Y/m we get from (B-9)

to (B-14) with (B-17) and (B-18) the following relations

for the

-1  = -Cma(v -v)/z,

bi = -C m (V - U)/Z ,a Li I

bs = 1 ,

r4 = Y m' ma (Vv - Uv)/mZ , (B-22)

b5  = Y mt m (V-U')/mZ

b 6 = -Y!C,

b7 -KI/C

b0 = A/C,
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where

Sc = _ (Y m )

and

Z - 1 + •)Y-T. (B-23)
ia

Since the spring coefficient, Y, is generally m-ich

greater than T, the quantity Z is positive (even

when T is at or near its ultimate value).

The relations of form (B-i) follow immediately

from the above results by substituion of the b into
Sn

(B-5) for each particular C. In the case C = + (Y/m)I/ 2

the terms involving dc/dt, d§/dt, and deo/dt can be

recollected using the relationi
, T v. d ( C.€) '•d (B-24)'i4 (cce d-T = - ' dt ("4

%iid

The resulting characteristic form of the mooring line

equations, making use of definitions (B-6), are those

presented in Section 4 of Chapter V.

I'

e!
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APPENDIX C. TRANSFORMATION OF THE CHARACTERISTIC

EQUATIONS TO CARTESIAN FORM

Using (88) gives the following relations between

the natural and Cartesian velocity components

X _Y

I

SV = V cose cosi+V cose sin# -V sine,
IV X y Z

i

(C-l)

V = V sin 8 cos # + V sin sin # + V cos e
T x y z

These are employed in (115), (116), and (117) to replace

SdV /dt, dV /dt, and dV /dt by the time derivatives
j. PV T

of Vx, V, V , and .

Now from the definitions given in (132) we find

d cos# cos8 - sin# sinB. -. I

(C-2)

d-O sin. cos 8 d + cos sin e -
dt =d dt

These relations are employed to eliminate do/dt and

d#/dt by appropriate combination of the transformed
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II
versions of (115). (116), and (117). Finally using (132) I

I the coefficients involving sin 0, cos 0, sin 4 , cos I

ean be put in terms of a, 0, y. The resulting relationz

are those given by (137) to (179). The last of these

was given in abbreviated fo:'rm involving a residual term

6---The complete form for (139) is as follows:

dV dV dVx + + Y Z (mY)-12 dT•-"dt dt td

(GT - wy)/m - (Y/nl) 1 L2 (C CC, -g)/YT1

(-. CO + •o L (G + w•-• (V U)

(V° iAA + Z"(x-U)d (Vy ) d_.•
d y

d y. + (y/m)I/2 ram( _ ) •
S]+ (Vz -Uz) dt mz n" dtJ C3

[1/

Salong ds/dt + { (Y/m)l/ 2 (

The lengthy set of terms in braces represents the
+

residual 6 In this relation

z (1 + Y T (c-4)

II

I
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Fortunately under normal conditions the residual

6- is of very minor consequence and can be neglected

for practical purposes. To justify this we note, first

of all, that Z is of the order of magnitude of Y.

Thus the terms involving G and G are of the order
V L

of magnitude

i"J

(V-U) G

1/2
where C" ta(Y/m) ue Under normal conditions we

would expect that (V U is of the order of magnitude

of 1-0 ft/sec or less. However, C" is of the order of

10,000 ft/sec. Thus the above terms are negligible corn-

pared with (G T - wy)/m.

k'A ThusThe terms involving dGa/dt, dG/dr, and dy/dt

are of the orde2

(C/C) (V - U)
n' dt

where C' is the signal speed for tracnverse waves.

The ratio (Ct/CV) n is of the order 1/100. If

(V nO- Uf) d r/dt is of the order adVo/dt, then the

above terms can be neglected.

1!
I.-prdwt (v-w)m
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Finally, the terms involving dV/dt in the residual

S86+ are of the order

(V - U) dVn

The ratio (V - )/C' is of the order i03, hence

these terms are negligible compared with a d V /dt,

d Vy/dt, and y d Vz/dt.

It will be noted furthermore that all of the

terms in the residual 6- are proportional to ma.

These terms would therefore not exist in the absence

of the fluid. The primary influence of the fluid is

clearly on the transverse waves and not on the

longitudinal waves.

1I

1il

I'
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APPENDIX D. MATRIX OF COEFFICIENTS FOR

THE NUMERICAL PREDICTION RELATIONS

The coefficients M and P of relations (154)nt, m nare given in the following pages. These are arranged in

order according to n.

n=1

M. ={2 - [ a.(j,k+l) + a2(A )]}/,

"M1 =-[Fc(j,k+l) y(j,k+l) + ((A,) y(A1 )]/B,

, =4

SH 15 = H10 = M? = M,0 = 0
S~8

P. = {2 1 M1,m %,(A.) + [Gn,(J,k+l) + Gn(A 1 )
S• m = l

+ w(a(jk+1) y(jk+l) + c(A.) , (A)) 6tIPflt B ,

B, = {[(1 + f,(j,k+l)) T(j,k+l)/ml]1 2

+ [(1 + e(A)) T(A )/mt]•/ }

1(2 Lm- FIG ' 2"

2Im

I ,j
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n 2

142 {2 [ect (j,k+l) +L(A)

ý2 2 =-La(~k1 2(~+. + ctA 2  (A)B 2

~23 - Ll(~k+1) y(j,k+l) + c.(A) Y(A)j/B

M42S M2= M27 b 8 =0,

8

2 {2 ~ (A 2 ) +[G nx(j, k+l)+Gnx (A~

M=l

+ w (cL j, k+l) y j, k+l) +L (A2) y (A2) 6t2 /M'l/ 2

Ba 1 [(1 e(j,k+1)) T(j,k+l)/Mt]1/2

+ (1 + c(A2) T(A2 )/M,]1'22'

1rT(.k+l1 T(A2  12}C2 I Lms (1+ e j,k+!)) a j1 ) + c(A2)4 )Y J
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n 3 1

M31 VM12 2 ( 3 ~ 1

{2 -*(jk+.i+2Aj ~r

M, LI% , I:=h

M-- 3y(J,±+1) y(j,k+l) + •(A) y(A,)J/B , V ,

4ma = 0

P3 - 2 X 3.mQ (, + [G ytj,k+ll + Gn(A,

t-•: + w (8(6,k+1) m(j,"+1) + •(A,) y(AJ] 6tImpi

and

SC3 = C•!.

I •

I___________
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nI

M4 1 42 2 (A4 =A 2)

M 4 2  {2-[2 (j, k+l)+ 2()J}B

M443 = Oj(j'k+1) y(j,k+1) + (2YA)/B

=4 1

M4 M 7 M48

8

P4 - L2 Mj~g Q A2 + [% y (jI,k+l) + Gh (A 2 )

+ w ($(Jpk+!) y(j,k+l) + O(A2) y(A2 ,))j 6t2,/mf/B

and

Cl=Cl
C 4 2
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n5

M = [(L(j,k+1) + a(A5)]/B3

b452 [O(j,k+l) + (As)]/B3

bý M3 L y(j,k+l) + y(A5,)]/B3l

M457 e 0

P5 fs 2 8 5. (5

- v(y(j,k+1) + y(A)) 6t5 /r

C1 -F'A) tlI5sI L]~ik1 / 3KB3 = /rn C511 F, K.. ( co + S(TcoYT
ci________K_ _____ )/)I _ _ _ _ _ _M1"2
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n=6

Mal [ax(j,k+l) +a(As)]/B,

M6 = [V(j,kc-i-) + (a
82 /B4

M6 3 = y(j,k+1) +y(A 6 )]/B4

M67 =M 6 5

M ==1

B66

c6 Jý =0 AYj ~)Ml
8 Y(,)MI

P.={ m6 A)+ G(~+)+G( 6
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M 71 7 2 M73 M% 4  MY 5  M7 6 0

Y, 1 (jo k) (jk

P7 = L(l/A)-"LY(i,k+1) Y(jkJ- ( A) t/2T,
! .t L + r(jk / (- + At/2c4

1 J

n =8

M = M,82 = 83 =Me4 =Me Mee 0

14M.7= 0, M =1

Pe=. (j,k) + F(T(j,k)) At/To}/(l+ it/To) ,

co eo(j,k) < F(T(j,k))

CI



206 "

LIST OF SYMBOLS

A Cross-sectional area of mooring line at
s, t; also used as an arbitrary constant

A End point of ciiaracteristic line (Fig. 16)
n

a Value of s/As for point A ;
Also used to denote normal aPceleratior

B Archemedian force on line

Bn End point of characteristic line (Fig. 17)

n• B+ Coefficients in characteristic equations

b Race of change of the dynamic spring
coefficient with tension, see Eq (55)

bn Interpolated relative time for point B
n n

C Signal speed (C' for transverse modes,
SC" for longitudinal modes)

C 1-9 C2  Transverse and longitudinal signal speeds
corresponding to conditions Of the mean
state of the line

C n See Eq (144)

SCa Added mass coefficient

C d Drag coefficient (form drag)

D Effective diameter of the line at s, t

Do Nominal diameter of the line in its original
unstrained state

D Mean rate of energ dissipation by form drag
per unit material length of line

If

!.I

-I
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dFn(w) Stochastic, complex differentials employed
dHn(w) in Fourier, Stieltjes representations of

stochastic variables

E Total mechanica energy per unit material
length of line

E Elastic energy per unit material length of
line

Ek Effective kinetic energy per •it materiallength of line
E Potential energy per unit material length

p of line

F Total fluid force on line

F(T) Saturation function giving £0 vs T for
slow unidirectional straining

f Fluid force per unit material length of line

"fb, fdfilfs Contribution to f due respectively to
static buoyancy, form drag, acceleration of
line relative to fluid and lateral thrust
due to vortex shedding

f(a) A scalar function of a

f Coefficient in relation for G (Chap. IV),
see Eq (173)

G That part of residual fluid force R not
dependent upon 6/6t, see Eq (105)or (3.06)

Gv,Gp,GT Natural components of G

G G x and y components of the normal part of Gnx fly

G? G' Anomalies of G and G, see Eq (175)VP V
G(o) Kernal function in an integral representation

for T, see Eq (73)

1:

I -



g Acceleration due to gravity

H Hysteresis for a closed cycle (energy loss
per cycle per unit material length of line)

Hi Hysteresis for an idealized process

Hm Maximum value of H

h(w) Transfer function related to G(o)

I. Moments of inertia of vessel about its

principal axes for roll, pitch, and yaw
(J = 1,2,3 respectively)

i Unit vector in the x-direction a fixed

Cartesian frame of reference

i /-l; also used to denote an integer

Jk The negative of the torque exerted on the
surface vessel by mooring line k

J'Anomaly of Jk from its mean value (JkO)

I kJk Cartesian components of Jk (J = 1,2,3)

The value 0 if an < 0, if an>N

n The integer truncation of the number a
Jn n
j Unit vector in the y-direction for a fixed

Cartesian frame of reference

j An integer

K Dynamic spring coefficient at zero tension,
see Eq (55)

Constant• with units of load per unit strain
characterizing the elastic properties of the
line

K* Apparent dynamic spring coefficient for
cyclic loading at frequency w

,%*



- -~-- -

209

k Unit vector in the z-direction (upwards)
for a fixed Cartesian freme of reference

k An integer; also denotes a complex wave
number (Chapter IV).

•• Constants in the representation of the
damping characteristics for transverse
oscillations of the line

L Original, unstrained length of li'w
(s = L at point of attachment to v' "•ell

M Total mass of line (directly a funCtion of
s)

M. The effective inertial mass of the surface
vessel for surge, sway, and heave
(j = 1,2,3 respectively)

M-m Matrix of coefficients in the equations
for QM, see Eq (154) and Appendix D.

m Mass of line per unit material coordinate

ma Effective added mass of water per unit
material coordinate

Mass of water displaced by line per unit

material coordinate

m' m+ ma

N Frictional coefficient ( = KT) for line;
also an integer representing the maximum
number of intervals of s in the numerical
grid

0 Notation for anchor point of mooring line

P Denotes a material point on the line; also
denotes period (=2ir/w).

P± Forcing terms in the characteristic equations

LL
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iPn Forcing term in Eq (154), see Appendix D

Separation vector between center of mass
of vessel and point of attachment of mooringline k (See Fig. 2)

nk Mean value of vector Pk

Pkj Cartesian components of pk (j = 1,2,3)

q(jk) Denotes any dependent variable of the
mooring line at S • .

SQn The set of dependent variables defined by
Eq (152), n = 1, 2 . . .8

qiI Cartesian components of the velocity of the
center of mass of the surface vessel

R Residual fluid force per unit material
coordinate, see Eq (18)

SRI Anomaly of the translational displacement
of the surface vessel

•RI Components of R' in surge, sway and heave
(j = 1,2,3 respectively)

r Position vector c" a material point on the
line with refererce to the anchor point

rk Position vector at point of attachment of
line k on the surface vessel

rk Mean value of rk

S(T,co) A function defined by Eq (119c)

s Material coordinate, representing the arc

length between 0 and P in the original
relaxed state of the line (a function of M
alone)

T Vector tension in line at s, t (T = TT)

II

-t
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Value of T at ancho-, point
Tk Value of T at point of attachment of lL.•e

k to surface vessel

T 0 Mean value of Tk
k^ k

T Cartesian components of Tk (j - 1,2,3)
kA • k

Tk' Anomaly of Tk from its mean value (T 0 )

T Scalar tension

d Dynamic tension for given e and eo

ST SSaturation value of T for given co

T UliJ"nate strength of linei ~u

T Mean value of T at s

STI Perturbation of T from its mean value
at s

t time

U Velocity of fluid (in absence of line) at s,t

U That part of U normal to the line at s,ti n
U , ,U, Natural components of U

SU ,U Uz Cartesian components of U

SxU U Cartesian components of tU/atxyrz

V Velocity of line at s,t ( r/Zt)

ii Vf

V ,V V Natural components of V at s,t

V xV Vy,V Cartesian components of V at s,t
yA

',V ',v ' Components of V in a natural coordinate
S ¶ system defined by the mean configuration of

the line

I.t
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LI A

v Effective mean value of the relative normal
velocity, defined by Zq (193)

w Net weight of line in water per unit material
coordJinate

X HorizontalCartesian coordinate in the plane of
the equilibrium configuration of the line (for
conlanar conditions)

Y The general spring coefficient dT/de, see

Eq (ll7c) or (121)

Y Value of Y corresponding to T and

y Horizontal Cartesian coordinate normal 'o the
Coplanar equilibrium configuration of the line

Z See Eq (126)

z Vertical Cartesian coordinate

A vector denoting the potential rotatioral
displacement of the surface vessel

i aj Cartesian components of a in rcll, pitch,
and yaw (j = 1,2,3 respectively)

a A dummy variable to denote e -Aeo; also used
to denote the x-component of 0

S0j,1j' Damping factors pertinent to the six components

of motion of the surface vessel (oj for tran-lation,
pj' for rotation, j = 1,2,3)

SThe y--component of

The anomaly of 0 from its mean value

See Eq (207); also used in a different sense in
Table 3

y The z-componert of T,

I
o

iI
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As Increment of s

"AT Amplitude of T under cyclic loading

At Uniform time step for numerical computation

6 An arbitrary phase angle

V 6'(a) Dirac delta function

6±i See page 196

5t Partial time step given by Eq (153c)

L Longitudinal strain in the line at s,t
(defined by 6a/Bs -1)

Co Permanent strain (or passive analastic strain)

Fi A partial strain referred to in the discussion
of the Maxwell model

Percurbation of £ from its mean value at s

See Eq (188)

- Ratio of lateral thrust on line to drag forceI
e Zenith angle of T, see Fig 15

Mean value of 0 at s

el' Perturbation of 6 from its meai at s

Real part of the complex wave -number k for
transverse wave modes

Potential translational displacement of the
surface vessel

X. Cartesian component of X in surge, sway, and
heave (j=1,2,3 respectively)

X See Eq (107)

~I

•z *
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AI

PnUnit vector in thie n•atural coordinate systert
normal to ^T and at s,t

WO Mean orientation of p at s[} •Departure of W from PO

Imaginary part of the complex wave number XSfor transver.3,. wave modes

I V Unit vector in the natural coordinate system
normal to Tý an at s,ti A A

Mean orientation of v

V Departure of v from vo

V Imaginary part of the complex wave number for
longitudinal waves (in the absence of curvature)

Vi Modified value of v for longitudinal waves in
the presence of curvature of the line

Active anelastic strain at s,t (its meaning
is clarified by reference to Chap III, Sec. 2)

F Mean value of • at s

I ?Pertu-batiop of • from its mean at s

S.14159 • .

S p Average density of sea water (about 2 slugs
per ft3)

a Actual arc length of line between 0 and P
in tha general strained state at time t

UP r •jNominal natural frequencies for an unmoored
Svessel (at, 0, a.? being zero)

012022• Variance of V and V respectively at sI ~V
T Unit vector tangent to line at s, t

To Mean oreintation of T at s

j .1' Departure of T from To at s

h

ii!

Si "
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T0'Tj ,Characteristic relaxation times for the line
*1 A

Azimuth of T, see Fig. 15

Anomaly of the rotational displacement of the.
surface vessel

* Cartesian components of t in roll, pitch,
*J and yaw (j = 1,2,3 respectively)

41 (w) Variance spectrum for V' at s = LIV

*2 (w) Variance spectrum for V L at s = LU

*3 (W) Variance spectrum for V ' at s = L

0i' Cartesian components of the anomaly of angular
velocity of the surface vessel (i = 1,2,3
respectively for roll, pitch, and yaw)

w Radian frequency

wm Spectral mean value of w, see Eq (248)

ws Strouhal frequency

Ii
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